• Title/Summary/Keyword: Mobile video streaming

Search Result 130, Processing Time 0.02 seconds

Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

  • Lim, Yeon-sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1249-1265
    • /
    • 2022
  • Video streaming has become one of the most popular applications for mobile devices. The network bandwidth required for video streaming continues to exponentially increase as video quality increases and the user base grows. Multi-Path TCP (MPTCP), which allows devices to communicate simultaneously through multiple network interfaces, is one of the solutions for providing robust and reliable streaming of such high-definition video. However, mobile video streaming over MPTCP raises new concerns, e.g., power consumption and cellular data usage, since mobile device resources are constrained, and users prefer to minimize such costs. In this work, we propose a mobile video streaming framework over MPTCP (mDASH) to reduce the costs of energy and cellular data usage while preserving feasible streaming quality. Our evaluation results show that by utilizing knowledge about video behavior, mDASH can reduce energy consumption by up to around 20%, and cellular usage by 15% points, with minimal quality degradation.

Energy Cognitive Dynamic Adaptive Streaming over HTTP

  • Kim, Seohyang;Oh, Hayoung;Kim, Chongkwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2144-2159
    • /
    • 2015
  • CISCO VNI predicted an average annual growth rate of 66% for mobile video traffic between 2014 and 2019 and accordingly much academic research related to video streaming has been initiated. In video streaming, Adaptive Bitrate (ABR) is a streaming technique in which a source video is stored on a server at variable encoding rates and each streaming user requests the most appropriate video encoding rate considering their channel capacity. However, these days, ABR related studies are only focusing on real-time rate adaptation omitting energy efficiency though it is one of the most important requirement for mobile devices, which may cause dissatisfaction for streaming users. In this paper, we propose an energy efficient prefetching based dynamic adaptive streaming technique by considering the limited characteristics of the batteries used in mobile devices, in order to reduce the energy waste and provide a similar level of service in terms of the average video rate compared to the latest ABR streaming technique which does not consider the energy consumption. The simulation results is showing that our proposed scheme saves 65~68% of energy at the average global mobile download speed compared to the latest high performance ABR algorithm while providing similar rate adaptation performance.

Design and Implementation of a Network-Adaptive Mechanism for HTTP Video Streaming

  • Kim, Yo-Han;Shin, Jitae;Park, Jiho
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • This paper proposes a network-adaptive mechanism for HTTP-based video streaming over wireless/mobile networks. To provide adaptive video streaming over wireless/mobile networks, the proposed mechanism consists of a throughput estimation scheme in the time-variant wireless network environment and a video rate selection algorithm used to increase the streaming quality. The adaptive video streaming system with proposed modules is implemented using an open source multimedia framework and is validated over emulated wireless/mobile networks. The emulator helps to model and emulate network conditions based on data collected from actual experiments. The experiment results show that the proposed mechanism provides higher video quality than the existing system provides and a rate of video streaming almost void of freezing.

An Efficient Mobile Video Streaming Rate Selection Technique based on Wireless Network Characteristics (무선망 특성을 고려한 효율적 비디오 스트리밍 재생률 선택 기술)

  • Pak, Suehee
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Explosive deployment of smart mobile devices such as smart phones, and tablets along with expansion of wireless internet bandwidth have enabled the deployment of mobile video streaming such that video traffic becomes the most important service in wireless networks. Recently, for more efficient video streaming services, the ISO MPEG group standardized a protocol called DASH (Dynamic Adaptive Streaming over HTTP) and the standard has been quickly adopted by many service providers such as YouTube and Netflix. Despite of the convenience of mobile streaming services, users also suffer from low QoE(Quality of Experience) due to dynamic channel fluctuations and unnecessary downloading due to high churning rates. This paper proposes a noble efficient video rate selection algorithm considering user buffer level, channel condition and churning rate. Computer simulation based performance study showed that the proposed algorithm improved the QoE significantly compared to a method that determines the video rate based on current channel conditions. Especially, the proposed method reduced the rebuffering rate, one of the most important performance factors of the QoE, to a nonnegligible level.

Channel-Adaptive Mobile Streaming Video Control over Mobile WiMAX Network (모바일 와이맥스망에서 채널 적응적인 모바일 스트리밍 비디오 제어)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • Streaming video service over wireless and mobile communication networks has received significant interests from both academia and industry recently. Specifically, mobile WiMAX (IEEE 802.16e) is capable of providing high data rate and flexible Quality of Service (QoS) mechanisms, supporting mobile streaming very attractive. However, we need to note that streaming videos can be partially deteriorated in their macroblocks and/or slices owing to errors on OFDMA subcarriers, as we consider that compressed video sequence is generally sensitive to the error-prone channel status of the wireless and mobile network. In this paper, we introduce an OFDMA subcarrier-adaptive mobile streaming server based on cross-layer design. This streaming server system is substantially efficient to reduce the deterioration of streaming video transferred on the subcarriers of low power strength without any modifications of the existing schedulers, packet ordering/reassembly, and subcarrier allocation strategies in the base station.

Adaptive Multiple TCP-connection Scheme to Improve Video Quality over Wireless Networks

  • Kim, Dongchil;Chung, Kwangsue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4068-4086
    • /
    • 2014
  • Due to the prevalence of powerful mobile terminals and the rapid advancements in wireless communication technologies, the wireless video streaming service has become increasingly more popular. Recent studies show that video streaming services via Transmission Control Protocol (TCP) are becoming more practical. TCP has more advantages than User Diagram Protocol (UDP), including firewall traversal, bandwidth fairness, and reliability. However, each video service shares an equal portion of the limited bandwidth because of the fair sharing characteristics inherent in TCP and this bandwidth fair sharing cannot always guarantee the video quality for each user. To solve this challenging problem, an Adaptive Multiple TCP (AM-TCP) scheme is proposed in this paper to guarantee the video quality for mobile devices in wireless networks. AM-TCP adaptively controls the number of TCP connections according to the video Rate Distortion (RD) characteristics of each stream and network status. The proposed scheme can minimize the total distortion of all participating video streams and maximize the service quality by guaranteeing the quality of each video streaming session. The simulation results show that the proposed scheme can significantly improve the quality of video streaming in wireless networks.

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

Cross-layer Video Streaming Mechanism over Cognitive Radio Ad hoc Information Centric Networks

  • Han, Longzhe;Nguyen, Dinh Han;Kang, Seung-Seok;In, Hoh Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3775-3788
    • /
    • 2014
  • With the increasing number of the wireless and mobile networks, the way that people use the Internet has changed substantively. Wireless multimedia services, such as wireless video streaming, mobile video game, and mobile voice over IP, will become the main applications of the future wireless Internet. To accommodate the growing volume of wireless data traffic and multimedia services, cognitive radio (CR) and Information-Centric Network (ICN) have been proposed to maximize the utilization of wireless spectrum and improve the network performance. Although CR and ICN have high potential significance for the future wireless Internet, few studies have been conducted on collaborative operations of CR and ICN. Due to the lack of infrastructure support in multi-hop ad hoc CR networks, the problem is more challenging for video streaming services. In this paper, we propose a Cross-layer Video Streaming Mechanism (CLISM) for Cognitive Radio Ad Hoc Information Centric Networks (CRAH-ICNs). The CLISM included two distributed schemes which are designed for the forwarding nodes and receiving nodes in CRAH-ICNs. With the cross-layer approach, the CLISM is able to self-adapt the variation of the link conditions without the central network controller. Experimental results demonstrate that the proposed CLISM efficiently adjust video transmission policy under various network conditions.

Adaptive Rate Control for Improving the QoE of Streaming Service in Broadband Wireless Network (광대역 무선네트워크에서 스트리밍 서비스의 QoE 향상을 위한 적응적 전송률 제어기법)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.334-344
    • /
    • 2010
  • Recently, due to the prevalence of various mobile devices and broadband wireless networks, a significant interests and demands for multimedia streaming services over the Internet have been increasing. However, it is difficult to transmit continuous multimedia stream when mobile terminals are moving. Therefore, in order to deploy mobile IPTV service in the broadband wireless network, efficient wireless resource utilization and seamless QoE (Quality of Experience) offers to the users are an important issue. In this paper, we propose a network based adaptive streaming scheme, called MARC (Mobile Adaptive Rate Control), which controls the quality of the video and rate of the video based on the status of the wireless channel. The proposed scheme uses awareness information of the wireless channel status and controls transmitting streaming video which is suitable for the wireless channel status and mobile station location, in order to provide a seamless video playback for mobile environment in addition to improving the quality of a streaming service. The proposed MARC scheme alleviates the discontinuity of video playback and allocates suitable client buffer in broadband wireless network. Simulation results demonstrate the effectiveness of our proposed scheme.