
This paper proposes a network-adaptive mechanism for 
HTTP-based video streaming over wireless/mobile 
networks. To provide adaptive video streaming over 
wireless/mobile networks, the proposed mechanism 
consists of a throughput estimation scheme in the time-
variant wireless network environment and a video rate 
selection algorithm used to increase the streaming quality. 
The adaptive video streaming system with proposed 
modules is implemented using an open source multimedia 
framework and is validated over emulated wireless/mobile 
networks. The emulator helps to model and emulate 
network conditions based on data collected from actual 
experiments. The experiment results show that the 
proposed mechanism provides higher video quality than 
the existing system provides and a rate of video streaming 
almost void of freezing. 
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I. Introduction 

User demand has increased for multimedia services within 
wireless networks. HTTP-based video streaming [1] has many 
benefits due to the use of HTTP/TCP/IP protocol, which is 
simple and easy to implement, has a low computation server 
load, and does not cause connection problems for network 
address translation (NAT)/firewall-applied networks. Moreover, 
with HTTP-based protocols, the network load can be reduced 
through caching or proxy technique. Research on HTTP-based 
streaming is actively continuing with consideration for 
wireless/mobile environments. Wi-Fi and 3G systems are used 
widely, so multimedia streaming techniques for mobile 
networks need to be improved. Adaptive streaming and 
lightweight network estimation techniques should be 
developed within wireless networks to address limited mobile 
resources and time-varying channel conditions. 

This work proposes and implements a network-adaptive 
HTTP video streaming system over Wi-Fi and 3G mobile 
networks. The streaming system adopts the version of HTTP 
live streaming from the Internet Engineering Task Force 
(IETF) [2]. Additionally, the proposed network-adaptive 
mechanism, consisting of throughput estimation and adaptive 
video rate selection, is enhanced to ensure quality of service 
(QoS) as well as improve efficiency. 

II. Existing HTTP Video Streaming System 

In [2], they proposed and modified an HTTP live streaming 
method as an IETF Internet-Draft, in which a server segments 
a single contiguous stream as segmented media files according 
to a constant period and generates a metafile (that is, m3u8 
playlist file) having the information of the media files. After a 
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client receives the metafile and identifies the media structure, it 
sequentially requests the appropriate media file upon the 
condition of the client’s buffer and channel, decodes the file, 
and then plays the media for the user. This protocol is 
compatible with that of the general HTTP web server. 
Therefore, only minor modification is necessary to use the 
metafile. 

A smooth streaming [3] embodies adaptive streaming 
features in the web server. This method can provide sufficient 
video quality according to the communication channel 
conditions so as not to hinder continuous video playback 
during video streaming service. This scheme is more efficient 
during a server’s content management because a whole stream 
is put into one stream container, which has more information 
and is more segmented than HTTP live streaming. However, 
the server reanalyzes the stream container and then 
corresponds individually to a client’s request. This is required 
to change the structure of the server to support these actions. 
Additionally, a client needs the corresponding video player for 
the different structure, which is another weak point. 

In the standard body of the 3rd Generation Partnership 
Project (3GPP), the related schemes are standardized and 
referred to as adaptive HTTP streaming (AHS) [4]. 3GPP AHS 
adopts similar server-driven structures, such as the HTTP live 
streaming that stores the metafile and media streams on the 
server side and sends the data through HTTP upon a client’s 
request. However, it has features that expand the form and 
option of the metafile and reduce the overhead via header 
compression. Recently, the MPEG group standardized 
dynamic adaptive streaming over HTTP (DASH) [5] as a 
major transport format. DASH is based on 3GPP AHS but 
technically improved. 

Compared to HTTP live streaming, DASH has detailed but 
complex metainformation. Even though various kinds of 
adaptive streaming are adoptable, the server and client must 
support DASH. In contrast, HTTP live streaming has a simple 
metafile, and the list of video levels is fixed and unchangeable 
once streaming has started. HTTP live streaming is available 
with a general web server and is easy to implement, but 
managing streaming data is difficult because all the segmented 
streams and metadata must be stored in separate files. 
Therefore, the server must handle large-scale file management 
as well. 

This paper is based on the structure of HTTP live streaming 
to embody and validate the proposed network-adaptive 
mechanism because the large-scale media file management is 
out of this paper’s scope. The proposed schemes of throughput 
estimation and video rate selection are applicable to any 
streaming system structure. 

There are two main ways to attain available throughput 

estimation for the adaptive streaming system: active 
monitoring and passive monitoring. Additionally, the cross-
layer approach uses information from several other layers. The 
probe packet method, which is an active monitoring method, 
uses additional packets to measure the available throughput. 
The self-loading periodic streams method [6] uses the 
increasing trend of periodic packet delay when a stream’s rate 
is higher than the available throughput. The CapProbe in [7] 
included convergence tests and convergence speed-up 
techniques by varying probing parameters. It combined the 
delay as well as the dispersion measurements of packet pairs to 
filter out the samples distorted by cross traffic. The Wbest in 
[8] utilized a packet pair and a packet train technique to 
estimate effective capacity and achievable throughput for 
802.11 wireless networks. 

In the passive monitoring, an exponentially weighted 
moving average (EWMA) with static coefficients was used to 
apply it to general networks [9]. A bandwidth estimation 
scheme over WLAN networks [10] uses success or failure 
rates and average packet sizes to calculate the available 
bandwidth. This scheme focuses to reflect characteristics of the 
specific networks, so it is not suitable for a general network 
structure combining wired and wireless networks.  

In this paper, a passive monitoring method based on EWMA 
is proposed for both reducing redundant probe packets and 
adopting a time-varying network condition. 

III. Proposed System 

1. Implemented Video Streaming System 

The proposed system structure shown in Fig. 1 consists of a 
general HTTP server and a client with network-adaptive 
modules based on HTTP live streaming. The implementation 
of the proposed system uses Gstreamer [11] as an open source 
multimedia framework that provides the plug-in-based 
functions for multimedia streaming service, such as format 
conversion, image resizing, encoding and decoding, and other 
expanded plug-ins for users’ own data types. The server 
generates several segmented streams (that is, transport streams 
[TSs]) and a related metafile (that is, m3u8 file) for adaptive 
streaming. The server sends the data via HTTP, which is 
requested by the client. The client requests the optimized bitrate 
of a proper stream to the server using its network information 
and the client’s buffer conditions. For video streaming, the 
client requests the metafile, and the received metafile is 
analyzed by the metafile parser in the client. Extracted 
information from the metafile is stored in the playlist buffer, 
shown in Fig. 1. The client requests a proper stream of the 
optimized bitrate to the server using its network information  
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Fig. 1. Overall structure of implemented video streaming system.
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and buffer conditions. The playlist buffer consists of a 
classified table of segmented stream URIs that is sorted by time 
and rate. 

The newly added throughput estimation module in Fig. 1, 
described in subsection III.2, estimates the current network 
conditions with sudden change. However, the estimation error 
still remains big in cases of abruptly changed conditions. To 
cope with the estimation error, a new rate selection module, 
described in subsection III.3, is added to select a properly 
segmented stream based on the current buffer information and 
network conditions estimated by the throughput estimation 
module. 

2. Advanced Throughput Estimation  

Firstly, we explain a throughput estimation method [9] based 
on EWMA with a constant weight coefficient. It is considered 
for the referenced throughput estimation of a time-varying 
network. It is assumed that the available channel throughput 
changes linearly. Specifically, the current changing trend of 
channel throughput is similar to that of the previous channel’s 
throughput. The available throughput of the next time slot is 
estimated using all the previous throughput data with the most 
recent proportional weights. The EWMA scheme that halves 
the coefficient of weights is as follows: 
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where Tn is the measured throughput at the n-th time and Dn is  

the estimation of throughput difference between n and (n–1) 
times. The estimated throughput of the (n+1) time is . 
From these steps, the moving average weights of the previous 
estimated throughputs are decreased on the order of 1/2, 1/4, 
1/8, and so on. 

1n̂T +

The proposed throughput estimation algorithm using the 
dynamic fluctuation index (DFI) mechanism improves the 
EWMA scheme by reflecting the degrees of fluctuation of the 
throughput difference. The DFI concept checks the change in 
measured throughputs, dn, over time and dynamically updates 
the weight to estimate Dn, while the EWMA scheme uses a 
static weighting value of 1/2. To reflect the network condition 
for each time, a fluctuation index (FI) is introduced to 
determine the difference between the measured and estimated 
throughputs and is defined as follows:  

 ˆ .n n nFI T T= −                   (2) 

The FI enables verification of whether the network condition 
has changed within a predictable range. If the absolute value of 
the FI is greater than an error bound, e, the network condition 
deviates from the estimated trend and changes rapidly. 

The DFI mechanism consists of the following three main 
parts as shown in Fig. 2: (Step 1) data acquisition from the 
application layer and calculation of basic parameters; (Step 2) 
determination of the moving average weight from FI; and 
(Step 3) throughput estimation for the next time interval. 

The role of each step is described as follows. Step 1 
calculates (or measures) the current throughput from the 
received data packets. The packet sizes and elapsed times are 
used. Using this information, the change in calculated 
throughputs over time and the FI are obtained. Step 2 involves 
the determination of the moving average weight, α, used to 
estimate the next-time throughput based on the FI value. The 
absolute value of FI is used to check the changing status of the 
network condition as follows. If the absolute value of FI is less 
than error bound, e, then the network condition does not 
change as quickly and is predictable via previously calculated 
values and the weight, α, can be reduced. Otherwise, α is 
increased while providing more weight to recently calculated 
throughputs because the network conditions change fast. Step 3 
is performed to estimate the next-time throughput ( ) via 
(3) and uses the items determined via Steps 1 and 2.  
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where c is a constant with . This DFI mechanism 
updates α dynamically, according to the network conditions,  

0 c≤ ≤ 1
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Fig. 2. Proposed DFI throughput estimation mechanism. 
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and it operates constantly whenever packets arrive. Then, it 
estimates the available network-adaptive throughput. 

3. Adaptive Video Rate Selection  

The different video qualities of a segmented sequence (or 
stream) on the available throughput are considered. The 
different qualities of the same video sequence are stored in a 
video sever, as shown in Fig. 1, and the corresponding bitrates 
are RQ1, RQ2, …, RQm for m different video qualities. 

A video segment (or stream) among the different qualities 
tagged as Q1, Q2, …, Qm is selected with a rate that is high but 
less than the estimated throughput. This is done using (4). 
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where Rn+1 is the rate of the (n+1)th segment corresponding to 
different video qualities and RQ1, RQ2, and RQm respectively 
represent the required throughput for stream Q1, Q2, and Qm. 
When the (n+1)th segment is required to send,  is the 
estimated throughput. 

1n̂T +

Since HTTP protocol uses TCP over IP as a best-effort 
network service, if the estimated throughput is less than the 
measured one, the video segment is received before the 
anticipated arrival time. In this case, the next video segment is 
received consecutively, and the receiver’s buffer can overflow 
because the incoming rate exceeds the consumed rate of the 
decoder and player. Therefore, the receiver needs to be on 
standby to prevent overflow, which decreases efficiency. 

In general, a rate-selection scheme performs buffer status 
monitoring to avoid buffer overflow. This paper proposes an  

 

Fig. 3. Proposed AVRS algorithm. 
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adaptive video rate selection (AVRS) algorithm that uses the 
HTTP transmission information (that is, 200 OK status code), 
the duration, and the rate of each video segment. Figure 3 
illustrates the concept of the proposed AVRS algorithm. 

Let the current segment n be actually received at time tr, n  and 
the given anticipated arrival time for the received n-th segment 
be td, n. Then, the spare time s(n) remains as (td, n – tr, n). Next, the 
additionally addable network capacity for the (n+1)th segment 
is 1

ˆ( ) ns n T +× . Therefore, available capacity of the next (n+1)th 
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IV. Performance Evaluation 

1. Experimental Environments 

Wireless networks are measured with several different 
conditions for the performance evaluation using the off-the-
shelf software IP Traffic Test & Measure [12]. Based on these 
experiments, typical network conditions are profiled and then 
applied in the NetDisturb emulator [13], which is used to 
illustrate performance comparisons among the proposed 
mechanism and others. The networks used for the experiment 
are Wi-Fi (IEEE 802.11g) and mobile WiMAX (IEEE 
802.16e), and a schematic diagram of the network 
measurement is shown in Fig. 4. A traffic measurement tool 
[12] is used to measure network conditions, which generates 
HTTP packets and forwards them to a receiver over networks 
to measure throughput, delay, and loss rate over time. 

The network conditions of suburban and downtown areas 
are measured on the subway while in motion. The measured 
time zones are morning, noon, rush hour, and night. The 
locations are diverse places, such as the suburbs, the subway, a 
downtown mall, and a downtown movie theater. The rapidly 
changing network profiles are selected for the test because  
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Fig. 4. Throughput measurement experiments over actual networks.
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Fig. 5. Typical measured traffic patterns. 

0

5

10

15

0 100 200 300 400 500 600 700 800 900
Time (s) 

Th
ro

ug
hp

ut
 (M

B
/s

) 

(a) School, daytime, walking (802.11g): TP1 

0

5

10

15

Th
ro

ug
hp

ut
 (M

B
/s

) 

0 100 200 300 400 500 600 700
Time (s) 

(b) Cinema, rush hour (802.11g): TP2 

0

2

3

1

Th
ro

ug
hp

ut
 (M

B
/s

) 

0 50 100 150
Time (s) 

(c) Subway, daytime (802.16e): TP3 

0

2

3

1

Th
ro

ug
hp

ut
 (M

B
/s

) 

0 50 100 150 200 250 300
Time (s) 

(d) Downtown, rush hour (802.16e): TP4 

 
 
these cases pose difficult situations for video streaming and are 

 

Fig. 6. Setup of video streaming experiment with network
emulator. 
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Table 1. Video stream parameters. 

Parameter Value 

Video encoder H.264 AVC (JM 13.4) 

Video container MPEG2-TS 

Sequence name Music video 

HQ 1,280×720, 5 Mbps 

MQ 800×480, 3 Mbps 
Video 
quality 

LQ 400×240, 1 Mbps 

 

suitable for demonstrating the effectiveness of the proposed 
mechanism. The selected traffic patterns (TPs) are illustrated in 
Fig. 5. 

The measured data (that is, throughput, delay, and packet 
loss rate) are logged, and their TPs are stored and emulated 
with the NetDisturb network emulator [13], as shown in Fig. 
6. Then, the network adaptive mechanisms with the HTTP 
server and video client are tested on the emulator with 
different TPs. 

The general web server and Linux client are used and the 
proposed algorithms are implemented as a plug-in of the 
GStreamer. We set a video buffer with a 10-MB size to provide 
a smooth video play during simulation. All algorithms are 
adopted into the HTTP live streaming for an easy 
implementation. However, we expect that the proposed 
schemes, when ported to DASH, have similar results because 
DASH provides a framework without any specified adaptive 
mechanism. 

The video stream consists of a metafile as well as the 
segmented streams, which are encoded in three different 
qualities, that is, low (LQ), medium (MQ), and high (HQ), 
without loss of generality, as described in Table 1.  

One quality-level stream has a 60-second total length and 
each segmented stream among the overall stream is three  
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Fig. 7. Schematic diagram of network-adaptive video streaming.
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seconds and can be switched to the other qualities of the 
segmented stream every three seconds. Therefore, there are 60 
segmented streams and four metafiles. Figure 7 is a schematic 
diagram illustrating network-adaptive video streaming. The 
typical TPs are stored and emulated in the emulator, and a 
streaming client requests and receives video streams from an 
HTTP web server via the emulator. 

2. Experiment Results 

First, the performance of the DFI scheme is evaluated based 
on how accurately it tracks the measured throughput data. The 
difference between measured and estimated data is illustrated 
in Fig. 8, which shows that the DFI scheme catches up with the 
measured throughput better than the EWMA does. 

Figure 9 illustrates a sensitivity analysis of ε by showing the 
mean absolute percentage error (MAPE). Changing ε makes a 
difference in the estimation error. Larger ε makes higher 
oscillation, and the lowest MAPE is achieved when ε is 0.05, 
but there is no remarkable performance change over the 
different values of ε. 

Second, the streaming tests are varied on the experiment bed, 
as shown in Fig. 6. The compared mechanisms are 
“Nonadaptive,” “EWMA,” “DFI,” and “DFI + AVRS.” 
“Nonadaptive” means that only MQ is serviced. The EWMA 
mechanism is adaptive video streaming via the EWMA 
scheme, the DFI mechanism is the applied DFI scheme, and 
the DFI + AVRS mechanism uses both the DFI and AVRS 
schemes simultaneously. The traffic patterns in the network 
emulator adopt the experiment traffic patterns shown in Fig. 5. 
Figures 5(a), 5(b), and 5(c) represent TP1, TP2, and TP3, 
respectively, while Fig. 5(d) is not adopted because the 
measured throughput is too low for use in the high-volume  

Fig. 8. Estimation error comparison between DFI and EWMA
using TP1. 
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Fig. 9. MAPE of DFI throughput estimation scheme with
variable ε over TP1. 
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video streaming test. 

Table 2 shows the experiment results. We extract such 
performance data as the percentage of different quality video 
and freezing time caused from insufficient video data to play 
at the receiver’s buffer. For TP1, the DFI+AVRS mechanism 
has an HQ:MQ:LQ ratio of 26.3:20.3:53.4, while the EWMA 
mechanism has a ratio of 5.3:5.3:89.4 and the DFI has a ratio 
of 23.7:18.7:57.6. Therefore, the proposed DFI+AVRS 
mechanism provides the highest percentage of HQ video 
among all of the compared mechanisms under the same 
traffic patterns and also has the best overall video quality. 
These results are similar to those for the other traffic patterns. 
The total freeze time is measured during 600 seconds of 
streaming. 

Figure 10 shows detailed sequences for selecting different 
video qualities at each time period under the TP1 network 
condition. The horizontal index corresponds to the temporal 
order for selecting the subsequent video quality and the vertical 
index is the number of experiment trials. The “H,” “M,” and 
“L” in Fig. 10 mean that, at each time period, the adaptive  
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Table 2. Experiment results. 

Test pattern 
Parameters Applied 

scheme TP1 TP2 TP3 

Nonadaptive 0 0 0 

EWMA 5.3 35.3 0 

DFI 23.7 37.3 7.3 

HQ video 
percentage 

(%) 
DFI + AVRS 26.3 42.7 8.7 

Nonadaptive 100 100 100 

EWMA 5.3 12.3 20 

DFI 18.7 33.3 44.0 

MQ video 
percentage 

(%) 
DFI + AVRS 20.3 33.3 46.3 

Nonadaptive 15.6 6.9 23.2 

EWMA 0 0.3 3.3 

DFI 0 0.6 2.7 
Freeze time 

(s) 

DFI + AVRS 0 0 2.4 

 

   

Fig. 10. Video quality selection of different mechanisms on TP1.
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mechanisms select either the HQ, MQ, or LQ video segment, 
respectively. Figure 10 shows that the proposed DFI+AVRS 
mechanism selects many more HQ video segments than do the 
other mechanisms. 

V. Conclusion 

An adaptive video streaming system was presented and 
implemented in this paper, and the related network-adaptive 
mechanism for the implemented system was proposed. The 
proposed network-adaptive mechanism consists of two parts. 
One is a DFI scheme for advanced throughput estimation to 
adopt rapid network changing conditions, and the other is an 
AVRS scheme to efficiently select the next video segment. 

Real network experiment measurement were performed to 
obtain some typical profiles to be used as TPs embodied within 
the network emulator. The proposed mechanism was evaluated 
in the implemented video streaming system with different TPs. 
The experiment results show that the proposed DFI+AVRS 
adaptive mechanism provides many more HQ video segments 
and less freezing time compared to other mechanisms. 
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