
This paper proposes a network-adaptive mechanism for
HTTP-based video streaming over wireless/mobile
networks. To provide adaptive video streaming over
wireless/mobile networks, the proposed mechanism
consists of a throughput estimation scheme in the time-
variant wireless network environment and a video rate
selection algorithm used to increase the streaming quality.
The adaptive video streaming system with proposed
modules is implemented using an open source multimedia
framework and is validated over emulated wireless/mobile
networks. The emulator helps to model and emulate
network conditions based on data collected from actual
experiments. The experiment results show that the
proposed mechanism provides higher video quality than
the existing system provides and a rate of video streaming
almost void of freezing.

Keywords: HTTP video streaming, network adaptive.

Manuscript received Dec.13, 2011; revised May 20, 2012; accepted Aug. 22, 2012.
This work was supported by the R&D program of the Ministry of Knowledge Economy

(MKE), Korea entitled “Study on Ubiquitous Infra, Core Technology on Enhanced QoS/
QoE.”

Yo-Han Kim (phone: +82 31 290 7153, dos95@skku.edu), Jitae Shin (corresponding author,
jtshin@skku.edu), and Jiho Park (jihopark@skku.edu) are with the College of Information and
Communication Engineering, Sungkyunkwan University, Suwon, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.13.0111.0788

I. Introduction

User demand has increased for multimedia services within
wireless networks. HTTP-based video streaming [1] has many
benefits due to the use of HTTP/TCP/IP protocol, which is
simple and easy to implement, has a low computation server
load, and does not cause connection problems for network
address translation (NAT)/firewall-applied networks. Moreover,
with HTTP-based protocols, the network load can be reduced
through caching or proxy technique. Research on HTTP-based
streaming is actively continuing with consideration for
wireless/mobile environments. Wi-Fi and 3G systems are used
widely, so multimedia streaming techniques for mobile
networks need to be improved. Adaptive streaming and
lightweight network estimation techniques should be
developed within wireless networks to address limited mobile
resources and time-varying channel conditions.

This work proposes and implements a network-adaptive
HTTP video streaming system over Wi-Fi and 3G mobile
networks. The streaming system adopts the version of HTTP
live streaming from the Internet Engineering Task Force
(IETF) [2]. Additionally, the proposed network-adaptive
mechanism, consisting of throughput estimation and adaptive
video rate selection, is enhanced to ensure quality of service
(QoS) as well as improve efficiency.

II. Existing HTTP Video Streaming System

In [2], they proposed and modified an HTTP live streaming
method as an IETF Internet-Draft, in which a server segments
a single contiguous stream as segmented media files according
to a constant period and generates a metafile (that is, m3u8
playlist file) having the information of the media files. After a

Design and Implementation of a Network-Adaptive
Mechanism for HTTP Video Streaming

Yo-Han Kim, Jitae Shin, and Jiho Park

ETRI Journal, Volume 35, Number 1, February 2013 © 2013 Yo-Han Kim et al. 27

client receives the metafile and identifies the media structure, it
sequentially requests the appropriate media file upon the
condition of the client’s buffer and channel, decodes the file,
and then plays the media for the user. This protocol is
compatible with that of the general HTTP web server.
Therefore, only minor modification is necessary to use the
metafile.

A smooth streaming [3] embodies adaptive streaming
features in the web server. This method can provide sufficient
video quality according to the communication channel
conditions so as not to hinder continuous video playback
during video streaming service. This scheme is more efficient
during a server’s content management because a whole stream
is put into one stream container, which has more information
and is more segmented than HTTP live streaming. However,
the server reanalyzes the stream container and then
corresponds individually to a client’s request. This is required
to change the structure of the server to support these actions.
Additionally, a client needs the corresponding video player for
the different structure, which is another weak point.

In the standard body of the 3rd Generation Partnership
Project (3GPP), the related schemes are standardized and
referred to as adaptive HTTP streaming (AHS) [4]. 3GPP AHS
adopts similar server-driven structures, such as the HTTP live
streaming that stores the metafile and media streams on the
server side and sends the data through HTTP upon a client’s
request. However, it has features that expand the form and
option of the metafile and reduce the overhead via header
compression. Recently, the MPEG group standardized
dynamic adaptive streaming over HTTP (DASH) [5] as a
major transport format. DASH is based on 3GPP AHS but
technically improved.

Compared to HTTP live streaming, DASH has detailed but
complex metainformation. Even though various kinds of
adaptive streaming are adoptable, the server and client must
support DASH. In contrast, HTTP live streaming has a simple
metafile, and the list of video levels is fixed and unchangeable
once streaming has started. HTTP live streaming is available
with a general web server and is easy to implement, but
managing streaming data is difficult because all the segmented
streams and metadata must be stored in separate files.
Therefore, the server must handle large-scale file management
as well.

This paper is based on the structure of HTTP live streaming
to embody and validate the proposed network-adaptive
mechanism because the large-scale media file management is
out of this paper’s scope. The proposed schemes of throughput
estimation and video rate selection are applicable to any
streaming system structure.

There are two main ways to attain available throughput

estimation for the adaptive streaming system: active
monitoring and passive monitoring. Additionally, the cross-
layer approach uses information from several other layers. The
probe packet method, which is an active monitoring method,
uses additional packets to measure the available throughput.
The self-loading periodic streams method [6] uses the
increasing trend of periodic packet delay when a stream’s rate
is higher than the available throughput. The CapProbe in [7]
included convergence tests and convergence speed-up
techniques by varying probing parameters. It combined the
delay as well as the dispersion measurements of packet pairs to
filter out the samples distorted by cross traffic. The Wbest in
[8] utilized a packet pair and a packet train technique to
estimate effective capacity and achievable throughput for
802.11 wireless networks.

In the passive monitoring, an exponentially weighted
moving average (EWMA) with static coefficients was used to
apply it to general networks [9]. A bandwidth estimation
scheme over WLAN networks [10] uses success or failure
rates and average packet sizes to calculate the available
bandwidth. This scheme focuses to reflect characteristics of the
specific networks, so it is not suitable for a general network
structure combining wired and wireless networks.

In this paper, a passive monitoring method based on EWMA
is proposed for both reducing redundant probe packets and
adopting a time-varying network condition.

III. Proposed System

1. Implemented Video Streaming System

The proposed system structure shown in Fig. 1 consists of a
general HTTP server and a client with network-adaptive
modules based on HTTP live streaming. The implementation
of the proposed system uses Gstreamer [11] as an open source
multimedia framework that provides the plug-in-based
functions for multimedia streaming service, such as format
conversion, image resizing, encoding and decoding, and other
expanded plug-ins for users’ own data types. The server
generates several segmented streams (that is, transport streams
[TSs]) and a related metafile (that is, m3u8 file) for adaptive
streaming. The server sends the data via HTTP, which is
requested by the client. The client requests the optimized bitrate
of a proper stream to the server using its network information
and the client’s buffer conditions. For video streaming, the
client requests the metafile, and the received metafile is
analyzed by the metafile parser in the client. Extracted
information from the metafile is stored in the playlist buffer,
shown in Fig. 1. The client requests a proper stream of the
optimized bitrate to the server using its network information

28 Yo-Han Kim et al. ETRI Journal, Volume 35, Number 1, February 2013

Fig. 1. Overall structure of implemented video streaming system.

Adaptive video
contents

HTTP-based streaming server

Video sources

Low rate
stream

High rate
stream

Network-adaptive module

Ethernet

Multimedia framework
Client Streaming server

Network

Throughput
estimation

Rate selection
(AVRS)

HTTP protocol

Metafile
parser

Playlist
buffer

Video play
decoder (H.264)

demuxer (MP2-TS)

TCP/IP & PHY TCP/IP & PHY

Wi-Fi
mWiMAX

and buffer conditions. The playlist buffer consists of a
classified table of segmented stream URIs that is sorted by time
and rate.

The newly added throughput estimation module in Fig. 1,
described in subsection III.2, estimates the current network
conditions with sudden change. However, the estimation error
still remains big in cases of abruptly changed conditions. To
cope with the estimation error, a new rate selection module,
described in subsection III.3, is added to select a properly
segmented stream based on the current buffer information and
network conditions estimated by the throughput estimation
module.

2. Advanced Throughput Estimation

Firstly, we explain a throughput estimation method [9] based
on EWMA with a constant weight coefficient. It is considered
for the referenced throughput estimation of a time-varying
network. It is assumed that the available channel throughput
changes linearly. Specifically, the current changing trend of
channel throughput is similar to that of the previous channel’s
throughput. The available throughput of the next time slot is
estimated using all the previous throughput data with the most
recent proportional weights. The EWMA scheme that halves
the coefficient of weights is as follows:

1

1

1

,
1 1 ,
2 2

ˆ ,

n n n

n n

n n n

d T T

D D d

T T D

−

−

+

= −

= +

= +

n

 (1)

where Tn is the measured throughput at the n-th time and Dn is

the estimation of throughput difference between n and (n–1)
times. The estimated throughput of the (n+1) time is .
From these steps, the moving average weights of the previous
estimated throughputs are decreased on the order of 1/2, 1/4,
1/8, and so on.

1n̂T +

The proposed throughput estimation algorithm using the
dynamic fluctuation index (DFI) mechanism improves the
EWMA scheme by reflecting the degrees of fluctuation of the
throughput difference. The DFI concept checks the change in
measured throughputs, dn, over time and dynamically updates
the weight to estimate Dn, while the EWMA scheme uses a
static weighting value of 1/2. To reflect the network condition
for each time, a fluctuation index (FI) is introduced to
determine the difference between the measured and estimated
throughputs and is defined as follows:

 ˆ .n n nFI T T= − (2)

The FI enables verification of whether the network condition
has changed within a predictable range. If the absolute value of
the FI is greater than an error bound, e, the network condition
deviates from the estimated trend and changes rapidly.

The DFI mechanism consists of the following three main
parts as shown in Fig. 2: (Step 1) data acquisition from the
application layer and calculation of basic parameters; (Step 2)
determination of the moving average weight from FI; and
(Step 3) throughput estimation for the next time interval.

The role of each step is described as follows. Step 1
calculates (or measures) the current throughput from the
received data packets. The packet sizes and elapsed times are
used. Using this information, the change in calculated
throughputs over time and the FI are obtained. Step 2 involves
the determination of the moving average weight, α, used to
estimate the next-time throughput based on the FI value. The
absolute value of FI is used to check the changing status of the
network condition as follows. If the absolute value of FI is less
than error bound, e, then the network condition does not
change as quickly and is predictable via previously calculated
values and the weight, α, can be reduced. Otherwise, α is
increased while providing more weight to recently calculated
throughputs because the network conditions change fast. Step 3
is performed to estimate the next-time throughput () via
(3) and uses the items determined via Steps 1 and 2.

1n̂T +

1

1

1

(1) , 0 1,
(1), ,
(1), ,

,

n n n n n n

n
n

n

n

D D d
FI e
FI e

e cT

α α α
α ε

α
α ε

−

−

−

= − + ≤ ≤
− ≤⎧

= ⎨ + >⎩
=

 (3)

where c is a constant with . This DFI mechanism
updates α dynamically, according to the network conditions,

0 c≤ ≤ 1

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Han Kim et al. 29

Fig. 2. Proposed DFI throughput estimation mechanism.

Yes

No

Step 1

Step 2

Step 3

Acquire information &
calculate parameters

nFI e≤

1,n n nd T T −= − ˆ| |n n nFI T T= −

1(1)n nα α ε−= − 1(1)n nα α ε−= +

1(1)
0 1

n n n n n

n

D D dα α
α

−= − +
≤ ≤

1n̂ n nT T D+ = +n=n+1

and it operates constantly whenever packets arrive. Then, it
estimates the available network-adaptive throughput.

3. Adaptive Video Rate Selection

The different video qualities of a segmented sequence (or
stream) on the available throughput are considered. The
different qualities of the same video sequence are stored in a
video sever, as shown in Fig. 1, and the corresponding bitrates
are RQ1, RQ2, …, RQm for m different video qualities.

A video segment (or stream) among the different qualities
tagged as Q1, Q2, …, Qm is selected with a rate that is high but
less than the estimated throughput. This is done using (4).

1

1 1

1 1 2

ˆ{ },arg max

{ , ,....., },
n

n n
R

n Q Q Qm

R T

R R R R
+

+ +

+

≤

∈
 (4)

where Rn+1 is the rate of the (n+1)th segment corresponding to
different video qualities and RQ1, RQ2, and RQm respectively
represent the required throughput for stream Q1, Q2, and Qm.
When the (n+1)th segment is required to send, is the
estimated throughput.

1n̂T +

Since HTTP protocol uses TCP over IP as a best-effort
network service, if the estimated throughput is less than the
measured one, the video segment is received before the
anticipated arrival time. In this case, the next video segment is
received consecutively, and the receiver’s buffer can overflow
because the incoming rate exceeds the consumed rate of the
decoder and player. Therefore, the receiver needs to be on
standby to prevent overflow, which decreases efficiency.

In general, a rate-selection scheme performs buffer status
monitoring to avoid buffer overflow. This paper proposes an

Fig. 3. Proposed AVRS algorithm.

Insufficient bit for higher rate

Spare
resource

bit

RQk

Time

Rate

Select the rate of (n+1)th
segment according to (5)

RQk–1

RQk–2

s(n)

tr,n td,n

1n̂T +

td,n+1

adaptive video rate selection (AVRS) algorithm that uses the
HTTP transmission information (that is, 200 OK status code),
the duration, and the rate of each video segment. Figure 3
illustrates the concept of the proposed AVRS algorithm.

Let the current segment n be actually received at time tr, n and
the given anticipated arrival time for the received n-th segment
be td, n. Then, the spare time s(n) remains as (td, n – tr, n). Next, the
additionally addable network capacity for the (n+1)th segment
is 1

ˆ() ns n T +× . Therefore, available capacity of the next (n+1)th
segment is , where Δt, 1 1

ˆ(())d n nt s n T+Δ + × +

())},

d, n+1 is (td, n+1 – td,

n) and the acceptable rate, Rn+1, for the next time (n+1) is
selected by

 (5) 1

1 , 1 1 , 1

1 1 2

ˆ{ (arg max

{ , ,....., }.
n

n d n n d n
R

n Q Q Qm

R t T t s n

R R R R
+

+ + + +

+

× Δ ≤ × Δ +

∈

IV. Performance Evaluation

1. Experimental Environments

Wireless networks are measured with several different
conditions for the performance evaluation using the off-the-
shelf software IP Traffic Test & Measure [12]. Based on these
experiments, typical network conditions are profiled and then
applied in the NetDisturb emulator [13], which is used to
illustrate performance comparisons among the proposed
mechanism and others. The networks used for the experiment
are Wi-Fi (IEEE 802.11g) and mobile WiMAX (IEEE
802.16e), and a schematic diagram of the network
measurement is shown in Fig. 4. A traffic measurement tool
[12] is used to measure network conditions, which generates
HTTP packets and forwards them to a receiver over networks
to measure throughput, delay, and loss rate over time.

The network conditions of suburban and downtown areas
are measured on the subway while in motion. The measured
time zones are morning, noon, rush hour, and night. The
locations are diverse places, such as the suburbs, the subway, a
downtown mall, and a downtown movie theater. The rapidly
changing network profiles are selected for the test because

30 Yo-Han Kim et al. ETRI Journal, Volume 35, Number 1, February 2013

Fig. 4. Throughput measurement experiments over actual networks.

802.11g

Traffic measurement 802.11g

HTTP traffic
generation

server

802.16e Base Station

802.16e to 802.11g
Tethering Traffic measurement

802.16e
Modem

802.16e

`

Fig. 5. Typical measured traffic patterns.

0

5

10

15

0 100 200 300 400 500 600 700 800 900
Time (s)

Th
ro

ug
hp

ut
 (M

B
/s

)

(a) School, daytime, walking (802.11g): TP1

0

5

10

15

Th
ro

ug
hp

ut
 (M

B
/s

)

0 100 200 300 400 500 600 700
Time (s)

(b) Cinema, rush hour (802.11g): TP2

0

2

3

1

Th
ro

ug
hp

ut
 (M

B
/s

)

0 50 100 150
Time (s)

(c) Subway, daytime (802.16e): TP3

0

2

3

1

Th
ro

ug
hp

ut
 (M

B
/s

)

0 50 100 150 200 250 300
Time (s)

(d) Downtown, rush hour (802.16e): TP4

these cases pose difficult situations for video streaming and are

Fig. 6. Setup of video streaming experiment with network
emulator.

802.11g 802.16e

Measured traffic
pattern

HTTP web server
Network emulator

Network-adaptive
streaming client

Table 1. Video stream parameters.

Parameter Value

Video encoder H.264 AVC (JM 13.4)

Video container MPEG2-TS

Sequence name Music video

HQ 1,280×720, 5 Mbps

MQ 800×480, 3 Mbps
Video
quality

LQ 400×240, 1 Mbps

suitable for demonstrating the effectiveness of the proposed
mechanism. The selected traffic patterns (TPs) are illustrated in
Fig. 5.

The measured data (that is, throughput, delay, and packet
loss rate) are logged, and their TPs are stored and emulated
with the NetDisturb network emulator [13], as shown in Fig.
6. Then, the network adaptive mechanisms with the HTTP
server and video client are tested on the emulator with
different TPs.

The general web server and Linux client are used and the
proposed algorithms are implemented as a plug-in of the
GStreamer. We set a video buffer with a 10-MB size to provide
a smooth video play during simulation. All algorithms are
adopted into the HTTP live streaming for an easy
implementation. However, we expect that the proposed
schemes, when ported to DASH, have similar results because
DASH provides a framework without any specified adaptive
mechanism.

The video stream consists of a metafile as well as the
segmented streams, which are encoded in three different
qualities, that is, low (LQ), medium (MQ), and high (HQ),
without loss of generality, as described in Table 1.

One quality-level stream has a 60-second total length and
each segmented stream among the overall stream is three

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Han Kim et al. 31

Fig. 7. Schematic diagram of network-adaptive video streaming.

Channel
fluctuation

HQ

MQ

LQ

Adaptive streaming

Time

seconds and can be switched to the other qualities of the
segmented stream every three seconds. Therefore, there are 60
segmented streams and four metafiles. Figure 7 is a schematic
diagram illustrating network-adaptive video streaming. The
typical TPs are stored and emulated in the emulator, and a
streaming client requests and receives video streams from an
HTTP web server via the emulator.

2. Experiment Results

First, the performance of the DFI scheme is evaluated based
on how accurately it tracks the measured throughput data. The
difference between measured and estimated data is illustrated
in Fig. 8, which shows that the DFI scheme catches up with the
measured throughput better than the EWMA does.

Figure 9 illustrates a sensitivity analysis of ε by showing the
mean absolute percentage error (MAPE). Changing ε makes a
difference in the estimation error. Larger ε makes higher
oscillation, and the lowest MAPE is achieved when ε is 0.05,
but there is no remarkable performance change over the
different values of ε.

Second, the streaming tests are varied on the experiment bed,
as shown in Fig. 6. The compared mechanisms are
“Nonadaptive,” “EWMA,” “DFI,” and “DFI + AVRS.”
“Nonadaptive” means that only MQ is serviced. The EWMA
mechanism is adaptive video streaming via the EWMA
scheme, the DFI mechanism is the applied DFI scheme, and
the DFI + AVRS mechanism uses both the DFI and AVRS
schemes simultaneously. The traffic patterns in the network
emulator adopt the experiment traffic patterns shown in Fig. 5.
Figures 5(a), 5(b), and 5(c) represent TP1, TP2, and TP3,
respectively, while Fig. 5(d) is not adopted because the
measured throughput is too low for use in the high-volume

Fig. 8. Estimation error comparison between DFI and EWMA
using TP1.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5

10

15

20

25

30

35

40

Time (s)

EWMA

Es
tim

at
io

n
er

ro
r (

%
)

DFI (ε=0.01)
DFI (ε=0.05)
DFI (ε=0.25)

Fig. 9. MAPE of DFI throughput estimation scheme with
variable ε over TP1.

0.00 0.05 0.10 0.15 0.20 0.25
10

11

12

13

14

15

16

17

18

19

ε

EWMA
DFI

M
A

PE
 (%

)

video streaming test.

Table 2 shows the experiment results. We extract such
performance data as the percentage of different quality video
and freezing time caused from insufficient video data to play
at the receiver’s buffer. For TP1, the DFI+AVRS mechanism
has an HQ:MQ:LQ ratio of 26.3:20.3:53.4, while the EWMA
mechanism has a ratio of 5.3:5.3:89.4 and the DFI has a ratio
of 23.7:18.7:57.6. Therefore, the proposed DFI+AVRS
mechanism provides the highest percentage of HQ video
among all of the compared mechanisms under the same
traffic patterns and also has the best overall video quality.
These results are similar to those for the other traffic patterns.
The total freeze time is measured during 600 seconds of
streaming.

Figure 10 shows detailed sequences for selecting different
video qualities at each time period under the TP1 network
condition. The horizontal index corresponds to the temporal
order for selecting the subsequent video quality and the vertical
index is the number of experiment trials. The “H,” “M,” and
“L” in Fig. 10 mean that, at each time period, the adaptive

32 Yo-Han Kim et al. ETRI Journal, Volume 35, Number 1, February 2013

Table 2. Experiment results.

Test pattern
Parameters Applied

scheme TP1 TP2 TP3

Nonadaptive 0 0 0

EWMA 5.3 35.3 0

DFI 23.7 37.3 7.3

HQ video
percentage

(%)
DFI + AVRS 26.3 42.7 8.7

Nonadaptive 100 100 100

EWMA 5.3 12.3 20

DFI 18.7 33.3 44.0

MQ video
percentage

(%)
DFI + AVRS 20.3 33.3 46.3

Nonadaptive 15.6 6.9 23.2

EWMA 0 0.3 3.3

DFI 0 0.6 2.7
Freeze time

(s)

DFI + AVRS 0 0 2.4

Fig. 10. Video quality selection of different mechanisms on TP1.

L
L
L
L
L
L
L
L
L
L

1
2
3
4
5
6
7
8
9

10

No
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

M
M
L
L
L
L
L
L
L
L

H
H
M
L
M
M
L
L
L
M

L
L
H
M
H
H
L
M
M
H

L
L
L
H
L
L
M
H
H
L

L
L
L
L
L
L
H
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

M
M
L
L
L
L
L
L
L
L

H
H
L
L
M
M
L
L
L
M

L
L
L
L
H
H
L
M
L
H

L
L
L
L
L
L
L
H
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

3029281 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(a) EWMA mechanism

L
L
L
L
L
L
L
L
L
L

1
2
3
4
5
6
7
8
9
10

No
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
M
L
M
L
L
L
L

L
L
L
M
L
M
L
L
L
L

H
H
M
L
H
L
L
H
L
H

H
M
M
L
M
M
L
M
L
L

L
L
M
L
L
H
H
M
M
H

L
L
H
H
H
H
M
L
L
L

H
H
H
L
M
L
L
H
H
L

L
M
L
M
L
L
H
L
M
L

L
M
L
H
L
L
L
L
H
L

H
L
L
L
M
H
H
M
L
H

L
M
L
L
M
H
L
M
M
L

L
H
L
L
H
L
L
L
L
L

L
L
L
H
L
L
M
H
L
H

L
H
L
M
M
M
H
L
L
L

M
M
H
H
M
H
L
H
H
H

M
L
M
L
L
L
M
M
L
L

H
H
H
H
M
L
H
H
H
H

L
L
M
L
H
L
M
L
H
M

L
L
M
M
L
H
H
H
H
H

H
L
L
L
M
L
L
L
L
L

H
L
H
M
L
L
L
L
L
M

M
H
L
L
M
M
L
L
L
L

M
L
L
H
M
M
L
H
M
L

L
M
M
H
M
H
H
L
H
H

M
H
H
H
L
L
L
L
H
L

3029281 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(b) DFI mechanism

(c) DFI mechanism + AVRS algorithm

L
L
L
L
L
L
L
L
L
L

1
2
3
4
5
6
7
8
9

10

No
L
L
L
L
L
L
L
L
L
L

L
L
L
M
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

H
H
L
L
M
L
M
M
M
H

L
L
M
H
H
L
H
L
H
L

L
L
H
L
M
L
L
L
L
L

H
H
L
M
L
H
M
H
M
L

M
M
L
H
M
H
M
L
L
L

H
H
H
H
H
L
M
M
L
M

L
M
H
L
L
H
M
L
H
L

L
L
L
H
M
L
L
L
L
H

L
L
H
L
L
M
H
L
H
H

L
L
L
L
L
M
L
M
H
L

L
H
L
M
H
L
M
M
L
H

L
L
H
L
H
L
L
H
M
H

L
H
H
L
L
L
L
H
L
L

M
L
L
L
L
L
M
M
L
L

H
L
L
M
L
H
H
H
L
L

H
L
L
M
M
M
M
L
H
M

L
L
L
L
M
H
L
L
L
L

H
H
H
H
H
L
M
H
H
L

H
M
L
H
M
M
M
H
L
M

L
M
H
L
H
H
H
L
L
M

M
L
M
H
L
L
L
L
M
M

L
M
L
L
L
L
H
L
L
L

M
L
H
H
M
H
H
M
M
H

H
H
L
L
H
L
L
H
L
L

L
H
L
H
M
H
M
M
H
H

M
H
H
L
M
M
L
M
H
L

3029281 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

mechanisms select either the HQ, MQ, or LQ video segment,
respectively. Figure 10 shows that the proposed DFI+AVRS
mechanism selects many more HQ video segments than do the
other mechanisms.

V. Conclusion

An adaptive video streaming system was presented and
implemented in this paper, and the related network-adaptive
mechanism for the implemented system was proposed. The
proposed network-adaptive mechanism consists of two parts.
One is a DFI scheme for advanced throughput estimation to
adopt rapid network changing conditions, and the other is an
AVRS scheme to efficiently select the next video segment.

Real network experiment measurement were performed to
obtain some typical profiles to be used as TPs embodied within
the network emulator. The proposed mechanism was evaluated
in the implemented video streaming system with different TPs.
The experiment results show that the proposed DFI+AVRS
adaptive mechanism provides many more HQ video segments
and less freezing time compared to other mechanisms.

References

[1] S. Akhshabi, A.C. Begen, and C. Dovrolis. “An Experimental
Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming
over HTTP,” ACM MMSys., Feb. 2011, pp. 157-168.

[2] R. Pantos, Ed., “HTTP Live Streaming,” IETF Internet-Draft,
work in progress, Sept. 2011.

[3] A. Zambelli, “IIS Smooth Streaming Technical Overview,”
Mar. 2009. Available: http://www.microsoft.com/en-us/download/
details.aspx?id=17678

[4] 3GPP TS 26.234, “Transparent End-to-End Packet-Switched
Streaming Service (PSS): Protocols and Codecs,” Dec. 2010.

[5] T. Stockhammer et al., “Text of ISO/IEC 23001-6: Dynamic
Adaptive Streaming over HTTP (DASH),” ISO/IEC
JTC1/SC29/WG11, N11578, Oct. 2010.

[6] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth:
Measurement Methodology, Dynamics, and Relation with TCP
Throughput,” IEEE Trans. Netw., vol. 11, no. 4, Aug. 2003, pp.
537-549.

[7] R. Kapoor et al., “CapProbe: A Simple and Accurate Capacity
Estimation Technique,” ACM SIGCOMM Comput. Commun.
Rev., vol. 34, no. 4, Oct. 2004, pp. 67-78.

[8] M. Li, M. Claypool, and R. Kinicki, “WBest: A Bandwidth
Estimation Tool for IEEE 802.11 Wireless Networks,” IEEE Conf.
Local Computer Netw., Oct. 2008, pp. 374-381.

[9] M. Gerla et al., “TCP Westwood with Adaptive Bandwidth
Estimation to Improve Efficiency/Friendliness Tradeoffs,”
Computer Commun., vol. 27, no. 1, Jan. 2004, pp. 41-58.

[10] H. Yoon and J. Kim, “Measurement-Based Achievable
Throughput Estimation in IEEE 802.11a WLANs,” IEEE
Commun. Lett., vol. 11, no. 9, Sept. 2007, pp. 714-716.

[11] GStreamer Team, “GStreamer: Open Source Multimedia
Framework.” Available: http://www.gstreamer.net

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Han Kim et al. 33

[12] ZTI Telecom, “IP Traffic – Test & Measure.” Available:
http://www.zti-telecom.com

[13] ZTI Telecom, “NetDisturb, Impairment Tool for IP Network.”
Available: http://www.zti-telecom.com

Yo-Han Kim received his BS and MS from
Ajou University, Suwon, Rep. of Korea, in 2001
and 2003, respectively, and his PhD from
Sungkyunkwan University, Suwon, Rep. of
Korea, in 2012. From 2005 to 2006, he was a
researcher at Pantech Inc. His research interests
include reliable and efficient multimedia

transmission over wireless networks.

Jitae Shin received his BS from Seoul National
University, Seoul, Rep. of Korea, in 1986, his MS
from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Rep. of
Korea, in 1988, and his MS and PhD in electrical
engineering from the University of Southern
California, Los Angeles, CA, USA, in 1998 and

2001, respectively. He is an associate professor in the College of
Information and Communication Engineering of Sungkyunkwan
University, Suwon, Rep. of Korea. His research interests include video
signal processing and transmission over next-generation Internet and
wireless/mobile networks, focusing on QoS/QoE, 4G communication
systems, and multimedia network control/protocol issues. He is a
member of IEEE and IEICE.

Jiho Park received his PhD in electrical
engineering from the University of Washington,
Seattle, WA, USA, in 2002. His PhD research
involved error resilient video communications
and error concealment. He joined the
Communication Research Laboratories of
Samsung Electronics in 2002. Since 2011, he has

been a faculty member at the College of Information & Communication
Engineering, Sungkyunkwan University, Suwon, Rep. of Korea. His
current interests include signal and video processing, pattern recognition,
embedded systems, and mobile and TV platform.

34 Yo-Han Kim et al. ETRI Journal, Volume 35, Number 1, February 2013

