• Title/Summary/Keyword: Mobile phase composition

Search Result 79, Processing Time 0.026 seconds

Mobile Phase Compositions for Ceramide III by Normal Phase High Performance Liquid Chromatography

  • Hong, Seung-Pyo;Lee, Chong-Ho;Kim, Se-Kyung;Yun, Hyun-Shik;Lee, Jung-Heon;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • Ceramide III was prepared by the cultivation of Saccharomyces cerevisiae. Ceramide III was partitioned from the cell extracts by solvent extraction and analyzed by Normal Phase High Performance Liquid Chromatography (NP-HPLC) using Evaporative Light Scattering Detector (ELSD). We experimentally determined the mobile phase composition to separate ceramide III with NP-HPLC. Three binary mobile phases of n-hexane/ethanol, n-hexane/lsoprophyl Alcohol(IPA) and n-hexane/n-butanol and one ternary mobile phase of n-hexane/IPA/methanol were demonstrated. For the binary mobile phase of n-hexane/ethanol, the first mobile phase composition, 95/5(v/v), was step-increased to 72/23(v/v) at 3 min. In the binary mobile phase, the retention time of ceramide III was 7.87min, while it was 4.11 min respectively in the ternary system, where the mobile phase composition of n-hexane/IPA/methanol, 85/7/8(v/v/v), was step-increased to 75/10/15(v/v/v) at 3 min. However, in the ternary mobile phase, the more peak area of ceramide III was observed.

Optimum Condition of Mobile Phase Composition for Purine Compounds by HCI Program (HCI프로그램을 이용한 퓨린 유도체의 이동상 조성의 최적화 조건)

  • Jin, Chun Hua;Lee, Ju Weon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.317-320
    • /
    • 2006
  • The optimum mobile phase condition for analysis of the six purine derivatives (caffeine, guanine, hypoxanthine, purine, theobromine, and theophylline) were determined by a HCI program. Reversed-phase HPLC system was used with the binary mobile phase, water and methanol. Three retention models (Snyder, Langmuir, and Binary polynomial) were considered to predict the retention factors. The elution profiles were calculated by the plate theory based on the binary polynomial retention model. From the final calculated results, the binary polynomial retention model showed the best agreements between the calculated and experimental data. In the isocratic mode, the optimum mobile phase composition of water/methanol is 93/7(v/v). However, we used step-gradient mode to decrease the run-time ($1^{st}$ mobile phase : water/methanol = 93/7 (v/v), gradient time : 5 min, $2^{nd}$ mobile phase : water/methanol = 75/25 (v/v)). The experimental and simulated profiles of above the two conditions show a good agreement.

HPLC Separation of Isoquinoline Alkaloids for Quality Control of Corydalis species

  • Kim, Eun-Kyung;Jeong, Eun-Kyung;Han, Sang-Beom;Jung, Jee-H.;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3597-3602
    • /
    • 2011
  • A simple and rapid analytical method was developed for the determination of eight isoquinoline alkaloids in Corydalis species. Eight isoquinoline alkaloids, including 2 aporphine alkaloids (isocorydine and glaucine) and 6 protoberberine alkaloids (coptisine, palmatine, berberine, canadine, corydaline, and tetrahydrocoptisine) were used as chemical markers which have a various biological activity and determined for quality control of Corydalis (C.) species (C. ternata, C. yanhusuo, and C. decumbens). To evaluate the quality of these herbal medicines, LC chromatographic separation of alkaloids were preferentially investigated on reversed-phase C18 column with pH variation and composition of mobile phase. In addition, the separation of these alkaloids in herbal extracts was found to be significantly affected on mobile phase composition using gradient elution. Especially for C. yanhusuo extract, berberine was seriously interfered with other alkaloid extracted from sample matrix when mobile phase composition was not optimized. As results, these compounds were successfully separated within 28 min using 10 mM ammonium acetate containing 0.2% triethylamine (adjusted at pH 5.0) as a mobile phase with gradient elution. On the basis of optimized HPLC conditions, 23 different Corydalis species samples were analyzed for the determination of alkaloid levels. In addition, principal component analysis (PCA) combined with the chromatographic data could be successfully classified the different geographic origin samples.

Separation of Glabridin from Licorice by RP-HPLC (RP-HPLC를 이용한 감초에서 Glabridin의 분리)

  • 정용안;이광진;권문주;노경호
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.408-411
    • /
    • 2003
  • By reversed-phase high-performance liquid chromatography, the extraction and separation of glabridin by from licoricce root was performed in this work. The column efficiencies and resolutions of glabridin were investigated with mobile phase composition on the reversed-phase chromatographic system. The glabridin collected from licorice root was identified by LC/MS. The mobile phase used to extract glabridin were composed of ethanol, methanol, acetone, and ethyl acetate. For one-hour ultrasonic extraction with solvent of ethyl acetate, the favorable content of glabridin was obtained as 1.26g/kg. The glabridin was well separated in the mobile phase composition of 50/50 vol. % (acetonitrile/water).

A Modified Adsorption Model for Retention of Nonpolar Solutes in Reversed Phase Liquid Chromatography

  • Cheong Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • The adsorption model in reversed phase liquid chromatography has been critically examined. It has been found that use of the Everett type surface activity coefficient for the solute in the stationary phase is not useful to study the retention characteristics of a nonpolar solute. We suggest a modified model. In this model it is assumed that the displaced modifier molecules from the surface monolayer do not transfer into the bulk mobile phase but stick to the nonpolar solute which has displaced them. In addition, we prefer to use an apparent stationary phase activity coefficient of the soluie instead of the Everett type activity coefficient. This modified adsorption model well explains the mobile and stationary phase effects on the solute retention upon variation of mobile phase composition.

A Study on the Peak Separation of Acetone and Acrolein Based on High-Performance Liquid Chromatography (HPLC) Method

  • Kim, Shin-Do;Kim, Chang-Hwan;Park, Jin-Su;Lee, Jeong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2011-2016
    • /
    • 2009
  • To resolve the differentiation problem of acetone and acrolein in the analysis of carbonyls by high-performance liquid chromatography (HPLC), we investigated the optimum analytical conditions for their separation. Carbonyl compounds were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated cartridges. We examined the influence of three experimental variables: temperature (25, 30, 40, 50 and 60 ${^{\circ}C}$), flow rate (1.0 and 1.2 mL/min), and relative mobile phase composition (among acetonitrile, water and tetrahydrofuran). The experimental results revealed the optimum analytical condition of a flow rate of 1.2 mL/min, temperature of 32 ${^{\circ}C}$ and mobile phase composition of acetonitrile: water: tetrahydrofuran = 34 : 52.8 : 13.2. The analysis of indoor air composition indicated that acrolein and acetone comprised 11% and 42% of all aldehydes, respectively.

Extraction and separation of glabridin from licorice by reversed phase high performance liquid chromatography

  • Choi, Du Young;Row, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.455-459
    • /
    • 2006
  • The extraction and separation of glabridin from licorice root by HPLC was performed in this work. First, by investigating the different extraction solvents, extraction methods and extraction times, a one-hour ultrasonic extraction procedure with ethyl acetate as the extraction solvent was optimized. Then the ethyl acetate extraction was applied to RP-HPLC for separation of glabridin. The column efficiencies and resolutions were experimentally investigated with different mobile phase compositions. Baseline separation of glabridin was obtained under the mobile phase composition of 50/50 vol.% (ACN/water). The retention time of glabridin was 20.3 min. The peak of glabridin was collected from the HPLC elution for several times and identified by LC/MS. Under the optimum extraction and HPLC separation methods, 1.26 g of glabridin per kg licorice root could be extracted.

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

Determination of Total Phenols in Environmental Waters by Capillary-HPLC with U.S.E.P.A. Classified Eleven Priority Pollutant Phenols after Nitrosation and Their Visible Spectrophotometric Detection

  • Chung, Yong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.297-302
    • /
    • 2005
  • The determination of total phenols was accomplished by capillary-high performance liquid chromatography (capillary-HPLC) after nitrosation of the U.S.E.P.A. classified 11 priority pollutant phenols, using the nitrosated parent phenol (POHNO) as a reference for calibration. The optimum mobile phase composition for this analysis was found by examining the effect of changing the percentage of acetonitrile (MeCN) in the mobile phase on retention factors (k values) and peak intensities. As MeCN percentage was increased, k values were reduced and peak intensities were generally increased. From the results obtained, it was found that the optimum mobile phase was 90%(v/v) MeCN solution at pH 8.0, the detection wavelength of 400 nm, and a detection limit (D.L., concentration at signal to noise ratio (S/N) of 3.0) of 4.5 ${\times}$ $10^{-7}$ M. In addition, 10 of the 11 phenols present in mineral or waste water were separated after the nitrosation by capillary-HPLC. The optimum mobile phase for separation was a 40%(v/v) MeCN solution at pH 5.0.

Purification of Paclitaxel and Its Derivatives by Supercritical Fluid Chromatography(SFC) (초임계 유체 크로마토그래피(SFC) 방법에 의한 Paclitaxel 및 그 유도체의 분리 정제)

  • 조병관;변상요
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 1999
  • Studies were carried out to elucidate the effects of pressure, temperature and mobile phase composition on supercritical $CO_2$ chromatographic separations of paclitaxel, baccatin III, 10-deacetyl baccatin III, 7-epi-10-deacetyltaxol, cephalomanine, and 10-deacetyltaxol. High resolutions of paclitaxel, 10-deacetylbaccatin III, 10-deacetyltaxol were observed with optimized pressure, temperature, and mobile phase composition. The highest resolution between paclitaxel and 10-deacetylbaccain III was observed at 275 kg/$\textrm{cm}^2$, $40^{\circ}C$ with the mobile phase composition of gradient mixture of 3.9-3.6 mL/min $CO_2$, 0.1-0.4 mL/min methanol for 20 min. Resolutions of baccatin III, capalomannine, and 7-epi-10-deacetyltaxol were found to be low in this study. On-line coupled SFE/SFC process was applied to isolate paclitaxel from yew tree powder. As a consequence, paclitaxel with a purity of 95% was obtained with a recovery yield of 38%.

  • PDF