• Title/Summary/Keyword: Mobile Positioning

Search Result 410, Processing Time 0.024 seconds

Comparison of Network-RTK Surveying Methods at Unified Control Stations in Incheon Area (인천지역 통합기준점에서 Network-RTK 측량기법의 비교)

  • Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.469-479
    • /
    • 2014
  • N-RTK(Network based RTK) methods are able to improve the accuracy of GNSS positioning results through modelling of the distance-dependent error sources(i.e. primarily the ionospheric and tropospheric delays and orbit errors). In this study, the comparison of the TTFF(Time-To-Fix-First ambiguity), accuracy and discrepancies in horizontal/vertical components of N-RTK methods(VRS and FKP) with the static GNSS at 20 Unified Control Stations covering Incheon metropolitan city area during solar storms(Solar cycle 24 period) were performed. The results showed that the best method, compared with the statics GNSS survey, is the VRS, followed by the FKP, but vertical components of both VRS and FKP were approximately two times bigger than horizontal components. The reason for this is considered as the ionospheric scintillation because of irregularities in electron density, and the tropospheric scintillation because of fluctuations on the refractive index take the place. When the TTFF at each station for each technique used, VRS gave shorter initialization time than FKP. The possible reasons for this result might be the inherent differences in principles, errors in characteristics of different correction networks, interpolating errors of FKP parameters according to the non-linear variation of the dispersive and non-dispersive errors at rover when considering both domestic mobile communication infra and the standardized high-compact data format for N-RTK. Also, those test results revealed degradation of positing accuracy, long initialization time, and sudden re-initialization, but more failures to resolve ambiguity during space weather events caused by Sunspot activity and solar flares.

Automatic Change Detection Based on Areal Feature Matching in Different Network Data-sets (이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지)

  • Kim, Jiyoung;Huh, Yong;Yu, Kiyun;Kim, Jung Ok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.483-491
    • /
    • 2013
  • By a development of car navigation systems and mobile or positioning technology, it increases interest in location based services, especially pedestrian navigation systems. Updating of digital maps is important because digital maps are mass data and required to short updating cycle. In this paper, we proposed change detection for different network data-sets based on areal feature matching. Prior to change detection, we defined type of updating between different network data-sets. Next, we transformed road lines into areal features(block) that are surrounded by them and calculated a shape similarity between blocks in different data-sets. Blocks that a shape similarity is more than 0.6 are selected candidate block pairs. Secondly, we detected changed-block pairs by bipartite graph clustering or properties of a concave polygon according to types of updating, and calculated Fr$\acute{e}$chet distance between segments within the block or forming it. At this time, road segments of KAIS map that Fr$\acute{e}$chet distance is more than 50 are extracted as updating road features. As a result of accuracy evaluation, a value of detection rate appears high at 0.965. We could thus identify that a proposed method is able to apply to change detection between different network data-sets.

Design and Implementation of the Extended SLDS for Real-time Location Based Services (실시간 위치 기반 서비스를 위한 확장 SLDS 설계 및 구현)

  • Lee, Seung-Won;Kang, Hong-Koo;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.2 s.14
    • /
    • pp.47-56
    • /
    • 2005
  • Recently, with the rapid development of mobile computing, wireless positioning technologies, and the generalization of wireless internet, LBS (Location Based Service) which utilizes location information of moving objects is serving in many fields. In order to serve LBS efficiently, the location data server that periodically stores location data of moving objects is required. Formerly, GIS servers have been used to store location data of moving objects. However, GIS servers are not suitable to store location data of moving objects because it was designed to store static data. Therefore, in this paper, we designed and implemented an extended SLDS(Short-term Location Data Subsystem) for real-time Location Based Services. The extended SLDS is extended from the SLDS which is a subsystem of the GALIS(Gracefully Aging Location Information System) architecture that was proposed as a cluster-based distributed computing system architecture for managing location data of moving objects. The extended SLDS guarantees real-time service capabilities using the TMO(Time-triggered Message-triggered Object) programming scheme and efficiently manages large volume of location data through distributing moving object data over multiple nodes. The extended SLDS also has a little search and update overhead because of managing location data in main memory. In addition, we proved that the extended SLDS stores location data and performs load distribution more efficiently than the original SLDS through the performance evaluation.

  • PDF

Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter (트위터의 감정 분석을 통한 실시간 장소 추천 시스템)

  • Oh, Pyeonghwa;Hwang, Byung-Yeon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • This paper proposes a system recommending spatial information what user wants with collecting and analyzing tweets around the user's location by using the GPS information acquired in mobile. This system has built an emotion dictionary and then derive the recommendation score of morphological analyzed tweets to provide not just simple information but recommendation through the emotion analysis information. The system also calculates distance between the recommended tweets and user's latitude-longitude coordinates and the results showed the close order. This paper evaluates the result of the emotion analysis in a total of 10 areas with two keyword 'Restaurants' and 'Performance.' In the result, the number of tweets containing the words positive or negative are 122 of the total 210. In addition, 65 tweets classified as positive or negative by analyzing emotions after a morphological analysis and only 46 tweets contained the meaning of the positive or negative actually. This result shows the system detected tweets containing the emotional element with recall of 38% and performed emotion analysis with precision of 71%.

Localization Using Extended Kalman Filter based on Chirp Spread Spectrum Ranging (확장 Kalman 필터를 적용한 첩 신호 대역확산 거리 측정 기반의 위치추정시스템)

  • Bae, Byoung-Chul;Nam, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.45-54
    • /
    • 2012
  • Location-based services with GPS positioning technology as a key technology, but recognizing the current location through satellite communication is not possible in an indoor location-aware technology, low-power short-range communication is primarily made of the study. Especially, as Chirp Spread Spectrum(CSS) based location-aware approach for low-power physical layer IEEE802.15.4a is selected as a standard, Ranging distance estimation techniques and data transfer speed enhancements have been more developed. It is known that the distance measured by CSS ranging has quite a lot of noise as well as its bias. However, the noise problem can be adjusted by modeling the non-zero mean noise value by a scaling factor which corresponds to the change of magnitude of a measured distance vector. In this paper, we propose a localization system using the CSS signal to measure distance for a mobile node taken a measurement of the exact coordinates. By applying the extended kalman filter and least mean squares method, the localization system is faster, more stable. Finally, we evaluate the reliability and accuracy of the proposed algorithm's performance by the experiment for the realization of localization system.

Design of Geo-fence-based Smart Attendance System (지오펜스 기반 스마트 출결시스템 설계)

  • Hong, Seong-Pyo;Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.496-502
    • /
    • 2020
  • The electronic attendance management system is being introduced and operated on a pilot basis by some universities and educational institutions. However, most of the related systems have installed and operated the existing barcode and magnetic card systems. Classroom attendance is managed by introducing RF cards, but it causes problems such as recognition distance (less than 5cm) and the need for a check process in which students have to read the card each time with a reader for attendance. Also, it is not possible to respond in real time to the situation of midterm (early leave, absence from the second lecture time, etc.) because it is used in the lecture time of one subject with the record checked once. In order to solve these problems, the various mobile attendance systems proposed to solve these problems are also unable to fundamentally solve problems such as interim attendance and proxy attendance because they check attendance using only the application of a smartphone. In this paper, we use geofencing technology, which is a positioning-based technology that detects the entry and exit of people, objects, etc. in areas separated by virtual boundaries. The proposed system solves the problem of intermediate attendance and alternate attendance by setting the student to automatically record the access record when entering and leaving the classroom set as a geofence with a smartphone. In addition, it also provides a function to prevent unintentional mistakes that occur through the smartphone by limiting some of the functions of the smartphone such as silence, vibration, and Internet use when entering the classroom.

A Case Study of Hyundai Motors: Live Brilliant Campaign for Modern Premium Brand

  • Choi, Myounghwa;Lee, Yoonseo;Koo, Kay Ryung;Lee, Janghyuk
    • Asia Marketing Journal
    • /
    • v.16 no.4
    • /
    • pp.75-87
    • /
    • 2015
  • As more companies become interested in global markets, it has become crucial for firms to create globalized brands whose positioning, advertising strategy, personality, looks, and feel are consistent across nations. The purpose of this study is to investigate the global branding strategy of the Hyundai Motor Company (hereafter HMC) in order to show how the company processes its branding strategy. HMC, one of the leading global companies in the automobile industry, set up its brand identity as "Modern premium", in alignment with their new slogan "New Thinking New Possibilities", in 2011. The aim of the "Modern premium" concept was to provide consumers with new experiences and values beyond their expectations. HMC wanted their consumers to think of their cars as not only a medium of transportation but as a life space, where they can share experiences alongside HMC. In an effort to conduct consumer research in 5 different nations, HMC selected "brilliant" as a key communication concept. The word "brilliant" expresses the functional, experiential, and emotional dimensions of HMC. HMC furthermore chose "live brilliant" as a key campaign message in order to reinforce their communication concept. After this decision, the "live brilliant" campaign was exhibited through major broadcast channels around the world. The campaign was the company's first worldwide brand campaign, where a single message was applied to all major markets, with the goal of building up a consistent image as a global brand. This global branding strategy is worth examining due to its significant contribution to growth generation in the global market. Overall, the 'live brilliant' global brand campaign not only improved HMC's reputation image-wise, with the 'Modern Premium' conceptualization of the brand as 'simple', 'creative' and 'caring', but also improved the consumer's familiarity, preference and purchase intention of HMC. In fact, the "live brilliant" campaign was a successful campaign which increased HMC's brand value. Notably, HMC's brand value increased continuously and reached 9 billion US dollars in 2013, leading it to reach 43rd place in the Global Brand Rankings according to the brand consulting group Interbrand. Its brand value largely surpassed that of Nissan (65th) and Chevrolet (89th) in 2013. While it is true that the global branding strategy of HMC involved higher risks, it was highly successful according to cross-nation consumer research. Therefore, this paper concludes that the global branding strategy of HMC made a positive impact on its performance. We further suggest HMC to combine its successful marketing with social media such as Facebook, Twitter, and Instagram and embrace digital media by extending its brand communication horizon to the mobile internet

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.