• Title/Summary/Keyword: Mobile IPv6(MIPv6)

Search Result 133, Processing Time 0.026 seconds

Implementation of Mobile IPv6 Fast Authorization for Real-time Prepaid Service (실시간 선불 서비스를 위한 모바일 IPv6 권한검증 구현)

  • Kim Hyun-Gon
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.121-130
    • /
    • 2006
  • In next generation wireless networks, an application must be capable of rating service information in real-time and prior to initiation of the service it is necessary to check whether the end user's account provides coverage for the requested service. However, to provide prepaid services effectively, credit-control should have minimal latency. In an endeavor to support real-time credit-control for Mobile IPv6 (MIPv6), we design an implementation architecture model of credit-control authorization. The proposed integrated model combines a typical credit-control authorization procedure into the MIPv6 authentication procedure. We implement it on a single server for minimal latency. Thus, the server can perform credit-control authorization and MIPv6 authentication simultaneously. Implementation details are described as software blocks and units. In order to verify the feasibility of the proposed model. latency of credit-control authorization is measured according to various Extensible Authentication Protocol (EAP) authentication mechanisms. The performance results indicate that the proposed approach has considerably low latency compared with the existing separated models, in which credit-control authorization is separated from the MIPv6 authentication.

  • PDF

Implementation and Analysis of the FMIPv6 (Fast Handover for Mobile IPv6) Using Layer 2 Triggers (제2계층 트리거를 이용한 FMIPv6 구현 및 분석)

  • Oh, Seung-Hun;Lee, Sung-Sik;Kim, Young-Han
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, we implement the fast handovers for mobile IPv6 (FMIPv6) on Linux system. Due to its dependency on operations in layer-2 (L2), we have added some functions into the network driver to generate triggers as the mobile node moves. We design and implement the FMIPv6 functions divided into two parts as an access router and a mobile node. We compare the packet loss and delay of the FMIPv6 implementation during the handover period with those of the MIPv6 and investigate the performance improvement.

A Study of Mobile IPv6 Fast Handover Algorithms in WLAN Environment (무선랜 환경에서 Mobile IPv6 Fast Handover 알고리즘에 관한 연구)

  • 이재황;김평수;김영근
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.509-512
    • /
    • 2003
  • 본 논문은 무선랜 환경에서 Mobile IPv6 Node가 이동 시에 발생하는 Handover Latency 를 줄이기 위한 새로운 알고리즘을 제안한다. 현재 Mobile IPv6 Fast Handover Protocol 은 Layer2 에서의 Handover 의 도움을 전제로 하기 때문에 실제 구현상에서 Real-time 이나Delay 에 민감한 Application 에 적용하기 어렵다. 이 문제를 해결하기 위해 무선랜에서 사용하는 Beacon 신호를 이용한 Dominant NAR 알고리즘을 적용하여 MIPv6 Fast Handover 과정을 선 처리하여 Handover Latency를 줄이고자 한다.

  • PDF

An Efficient Hierarchical Authentication Scheme through Brokers in Mobile IPv6 Networks (브로커를 통한 모바일 IPv6 네트워크의 효율적인 계층적 인증기법)

  • Jung, Ha-Gwon;Jeong, Jong-Pil
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.15-26
    • /
    • 2011
  • As quick and secure mobility service is becoming a critical issue in the ubiquitous environment. Internet Engineering Task Force (IETF) has done a lot of meaningful work in order to cope with the critical issues, which is a key technology of guaranteeing the legally and safely using of network resources, they has proposed Hierarchical Mobile IPv6 (HMIPv6) to complement for such problems as handover latency and signaling overhead in existing MIPv6. Most of the current research about HMIPv6 focuses on how to optimize the interactive processes between the HMIPv6 and AAA (Authentication, Authorization, Accounting) protocol. This paper describes a cost-effective hierarchical authentication scheme, which makes its focus on minimizing the authentication latency in AAA processing. In this scheme, a hierarchical AAA architecture is proposed, in which the AAA servers are deployed on the Mobility Anchor Point (MAP), the Root AAA server manages several Leaf AAA servers and the Brokers on behalf of the AAA server in home domain. The simulation results shows that the proposed scheme reduces the handoff and authentication latency evidently compared to the previous traditional authentication combination modeling.

HIMIPv6: An Efficient IP Mobility Management Protocol for Broadband Wireless Networks (HIMIPv6: 광대역 무선 통신 네트워크를 위한 효율적인 IP 이동성 관리 프로토콜)

  • Jeong Hyeon-Gu;Kim Young-Tak;Maeng Seung-Ryoul;Chae Young-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.291-302
    • /
    • 2006
  • With the increasing deployment of mobile devices and the advent of broadband wireless access systems such as WiBro, WiMAX, and HSDPA, an efficient IP mobility management protocol becomes one of the most important technical issues for the successful deployment of the broadband wireless data networking service. IETF has proposed the Mobile IPv6(MIPv6) as the basic mobilitymanagement protocol for IPv6 networks. To enhance the performance of the basic MIPv6, researchers have been actively working on HMIPv6 and FMIPv6 protocols. In this paper, we propose a new mobility management protocol, HIMIPv6 (Highly Integrated MIPv6), which tightly integrates the hierarchical mobility management mechanism of the HMIPv6 and the proactive handover support of the FMIPv6 to enhance the handover performance especially for the cellular networking environment with high frequent handover activities. We have performed extensive simulation study using ns-2 and the results show that the proposed HIMIPv6 outperforms MIPv6, FMIPv6 and HMIPv6 in terms of signaling overhead, service interruption and packet lost during handovers.

LFH: Low-Cost and Fast Handoff Scheme in Proxy Mobile IPv6 Networks with Multicasting Support (프록시 모바일 IPv6 네트워크에서 멀티캐스팅을 지원하는 저비용의 빠른 이동성관리 기법)

  • Kim, Eunhwa;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.265-278
    • /
    • 2013
  • With the recent advancements in various wireless communication technologies, the importance of mobile multicasting is coming to the fore, in an effort to use network resources more efficiently. In the past, when various mobile IP-based multicast techniques were proposed, the focus was put on the costs needed for network delivery for providing multicast services, as well as on minimizing the multicast handover delay. For techniques using MIPv6 (Mobile IPv6), a host-based mobility management protocol, however, it is fundamentally difficult to resolve the problems of handover delay and tunnel convergence. To resolve these problems, a network-based mobility management protocol called PMIPv6 (Proxy Mobile IPv6) was standardized. Although performance is improved in PMIPv6 over MIPv6, it still suffers from the problems of handover delay and tunnel convergence. In this paper, to overcome these limitations, a technique called LFH (Low-cost and Fast Handoff) is proposed for fast and low-cost mobility management with multicasting support in PMIPv6 networks. To reduce the interactions between the complex multicast routing protocol and the multicast messages, a simplified proxy method called MLD (Multicast Listener Discovery) is implemented and modified. Furthermore, a TCR (Tunnel Combination and Reconstruction) algorithm was used in the multicast handover procedure within the LMA (Local Mobility Anchor) domain, as well as in the multicast handover procedure between domains, in order to overcome the problem of tunnel convergence. As a result, it was found that LFH has reduced multicast delay compared to other types of multicast techniques, and that it requires lower costs as well.

Fast Micro-mobility Management Scheme without DAD Session in HMIPv6 Networks (계층적 Mobile IPv6 기반의 빠른 Micromobility 관리 프로토콜)

  • Lee, Sung-Kuen;Kim, Eal-Lae;Lim, Tae-Hyung;Jeong, Seok-Jong;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.746-754
    • /
    • 2007
  • In this paper, we propose a fast handoff algorithm for micromobility management enhancement in HMIPv6 networks, which eliminates the DAD procedure involved in the regular HMIPv6 in order to o decrease handoff latency and increase the resource utilization efficiency. In the proposed scheme, the MAP is designed to guarantee the uniqueness of MN's interface identifier within a MAP domain as long as the MN moves in a MAP domain, so that the MN configures the new address without the DAD procedure resulting in the decreased handoff latency significantly When the MN resides in a subnet, MIPv6 is used adaptively as a mobility management protocol, which is to reduce bandwidth waste from the IP packet header overhead of IP-in-IP tunneling from the regular HMIPv6. We evaluate the performance of the proposed handoff micromobility algorithm in terms of handoff delay and packet loss thru computer simulation. Thru various computer simulation results, we verified the superior performance of the proposed scheme by comparing with the results of other schemes, MIPv6 and HMIPv6.

A Nested Network Mobility Support Scheme in a Proxy MIPv6 Domain (Proxy MIPv6 도메인에서 중첩 네트워크 이동성 지원 방안)

  • Park, Hee-Dong;Kim, Do-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1385-1391
    • /
    • 2008
  • The network-based IP mobility solution - Proxy MIPv6 provides a mobile node with local mobility support without requiring MIPv6 functionality of the mobile node by using two principle functional entities, LMA (Local Mobility Anchor) and MAG (Mobile Access Gateway) located in a Proxy MIPv6 domain. Yet, in case that a mobile node moves into a mobile network located in the domain, the mobile node can't receive the local mobility support any more because it can't communicate with the MAG. This paper proposes a scheme to support nested network mobility in a Proxy MIPv6 domain by adding MAG functionality to a mobile router in the mobile network and evaluates the performance of the proposed scheme. Performance analysis shows that the proposed scheme can increase the performance of handover delay, signaling costs, and packet loss ratio.

  • PDF

A Novel Integration Mechanism of FMIPv6 and HMIPv6 to Reduce Loss and Out-of-Sequence Problem (패킷 손실과 순서 어긋남 문제를 해결할 수 있는 새로운 FMIPv6와 HMIPv6 통합 메커니즘)

  • Lee, Jae-Hwoon;Lim, Yu-Jin
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.2
    • /
    • pp.110-119
    • /
    • 2007
  • Mobile IPv6 (MIPv6) enables a mobile node (MN) to maintain its connectivity with a correspondent node (CN) while changing its point of attachment. In MIPv6, packets sent from a CN to a MN during handover are lost. Several mechanisms including FMIPv6 and HMIPv6 have been proposed in order to minimize packet loss. However, such mechanisms still suffer from performance degradation due to not only packet loss but also out-of-sequence packets. In this paper, we propose I-FHMIPv6 to resolve packet loss as well as the out-of-sequence packet problem. In I-FHMIPv6, the flush message is newly defined in order to notify a home agent (HA) or CN of the fact that the binding cache entry of a MN is about to be updated. A MN receiving the flush message can know that there is no more packets transmitted via the previous route, which resolve the out-of-sequence packet problem. Moreover, with the proposed mechanism, we can minimize packet loss by integrating FMIPv6 and HMIPv6 efficiently. I-FHMIPv6 is evaluated by performing simulations, and the simulation results show that I-FHMIPv6 outperforms FMIPv6 and HMIPv6.

Cost Analysis of Mobility Management Schemes for IP-based Next Generation Mobile Networks (IP기반의 차세대 모바일 네트워크에서 이동성관리 기법의 비용분석)

  • Kim, Kyung-Tae;Jeong, Jong-Pil
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.1-16
    • /
    • 2012
  • Cost-effective mobility management for the roaming mobile users is very important in the seamless services on next-generation wireless network (NGWN). MIPv6 (Mobile IPv6) is one of the mobility management schemes proposed by the IETF (The Internet Engineering Task Force) and various IPv6-based mobility management schemes have been developed. They are directly involved with data transfer from MN (Mobile Node). In this paper, two kinds of schemes in analyzing of mobility management schemes are proposed. The signaling transfer and packet delivery procedures for each mobility management schemes are analyzed, respectively. The signaling cost for mobility management schemes are calculated, and the cost of each protocol are analyzed numerically. In other word, applying the sum of signaling cost and packet delivery cost to each mobility management scheme, their costs are analyzed. Finally, our performance evaluation results that the network-based mobility management scheme shows better performance in terms of overall cost.