• Title/Summary/Keyword: Mobile Handset Antenna

Search Result 76, Processing Time 0.026 seconds

Design of Dual Half Wavelength Loaded Line Antenna for Multiband Mobile Handsets (다중 대역 이동 통신 단말기용 이중 반파장 로디드 라인 안테나 설계)

  • Park, Jin-Woo;Kim, Duk-Gu;Jung, Byung-Woon;Park, Myun-Joo;Cheong, Young-Seek;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.265-272
    • /
    • 2007
  • In this paper, a frequency changeable antenna using dual half wavelength loaded line structure is proposed for multiband mobile handset applications. The proposed antenna has a capability of independent frequency shift by controlling two added inductance values in two different bands. Experimental results indicate that the proposed antenna provides enough effective bandwidth to cover $CELLULAR(824\sim894\;MHz)$, $EGSM(880\sim960\;MHz)$, $DCS1800(1,710\sim1,880\;MHz)$, $PCS1900(1,850\sim1,990\;MHz)$ and $WCDMA(1,920\sim2,170\;MHz)$ bands and peak gain variation is only 0.54 dB.

Design and fabrication of a Triple Band Internal Antenna for Handset (휴대용 내장형 트리플(DCS, PCS, UPC5) 안테나 설계 및 제작)

  • Park, Seong-Il;Ko, Young-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.681-684
    • /
    • 2008
  • In this paper, triple band mobile chip antenna for DCS($1.71{\sim}1.88GHz$) / PCS($1.75{\sim}1.87GHz$) / UPCS($1.85{\sim}1.99GHz$) on PCB Layout is fabricated. As designed and fabricated antenna is loaded PCB layout, that plate a both side at two independence patterns(upper & lower) to reduce the size and a capacitor for DCS, PCS, UPCS band is proposed. The antenna has a small size of about $19mm{\times}4mm{\times}1.6mm$, narrow bandwidth which is the defect of chip antenna is improved. Bandwidth of fabricated antenna to VSWR less than 2 is satisfied and all bandwith is acquired 15.1 % at $1.71GHz{\sim}1.99GHz$.

  • PDF

Design of UWB Antenna for the External Receiver of Capsule Endoscopy (캡슐 내시경의 외부 수신기용 UWB 안테나 설계)

  • Kim Hong-Seok;Oh Min-Seok;Cheon Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.790-796
    • /
    • 2005
  • In order to accomplish a wireless communication of capsule endoscopy, an environment study in the human body and receiving antenna design have been performed. The proposed antenna is the loop antenna designed to minimize the propagation loss in multi-loss layer such as the human body and utilize the magnetic field. Considering the propagation loss in the human body, the frequency range is from 400 MHz to 500 MHz. Acorrrding to the FCC regulations, the permittivity and conductivity for each human tissue were extracted. We set up an equivalent model and make an aqueous solution which is replaced with the human body. Due to movement of capsule in the human body which propagation loss is extremly severe, an array antenna is required. Irrespective of the location of transmission antenna transmitting a signal of 1 mW, we confirme what it is possible for the enough signal detection as the average signal level of array antenna is -60 dBm.

A Study on Coupling Coefficient and Resonant Frequency Controllable Internal PIFA (결합계수 및 공진 주파수 조절이 가능한 내장형 PIFA에 관한 연구)

  • Lee, Sang-Hyun;Lee, Moon-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.99-104
    • /
    • 2010
  • In this paper, the internal antenna for mobile communication handset which is able to control both coupling coefficient and resonant frequency without any major modification of radiator and ground plane of PIFA(Planner Inverted F Antenna). The resonant frequency as well as amount of coupling between feeding point and shorting post can be adjusted by changing inductance. Because the inductor is connected on shorting post where the strength of electric field is weak, the performance reduction of the proposed antenna is very small enough to neglect. For the variation of the inductance value within 3.3nH, the resonant frequency of antenna can have operating range of 1650MHz ~ 1830MHz. And as be increased the inductance, the coupling coefficient of antenna is over coupled. This means that it can be electrically controlled the resonant frequency and input impedance of antenna by inductance and minimized the mismatch loss. Size reduction of 10% for PIFA is obtained without any major modifications of antenna elements. For the frequency range from 1650 to 1830MHz, reduction of the measured antenna gain is within 0.93dB as varying the value of inductance from 0 to 3.3nH.

Design and Implementation of WWAN Antenna with Metal Structure for Increasing Frequency Bandwidth and Gain (안테나 대역폭과 이득 향상을 위한 금속 구조체가 적용된 WWAN 안테나의 설계 및 구현)

  • Lee, Keon-Myung;Cho, Il-Hoon;Cho, Young-Hee;Lee, In-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.940-946
    • /
    • 2010
  • In this paper, we proposed the internal antenna on PCB(Planar Circuit Board) for achieving WWAN(Wireless Wide Area Network) operation in the laptop computer. The proposed antenna has a metal structure instead of printed pattern on PCB to improve the antenna characteristics for GSM850/900 bands. Compared to PCB embedded antenna without metal structure, the proposed antenna occupies similar area of $74{\times}11{\times}0.5\;mm^3$ with before and the bandwidth of the proposed one for GSM850/900 bands is increased 13 MHz than before. Further we confirmed that the proposed antenna has higher radiation gain of -4.45~-2.29 dBi for GSM850/900 bands than PCB embedded antenna without metal structure.

Characteristics of On-Board Broadband Antenna for 2.4 GHz Band (2.4 GHz 대역의 On-Board Broadband 안테나 특성)

  • Lee, Sang-Seok;Lee, Young-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • In this paper, to operate 2.4 GHz Inverted-L antenna with On-Board Broadband characteristics is proposed. The antenna was designed on the system board, the bandwidth by adjusting the reactance of the antenna that was formed common-mode and differential-mode on the antenna stubs has been improved. The system size is $80mm{\times}60mm$, the size of the antenna was limited to $30mm{\times}60mm$, the thickness of FR4 dielectric substrate is 0.8 mm, FR4 dielectric constant 4.4 is used. The experimental results, the bandwidth from 17.2 to 24.1 %, the gain is 3.01~4.71 dB, omni-directional radiation pattern characteristics were obtained. By a mobile terminal design applying the results of the paper, the handset's price competitiveness and production efficiency can be improved.

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics for Mobile Handset (단말기용 이중 대역저지 특성을 가지는 초광대역 안테나 설계 및 구현)

  • Cho, Young Min;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • In this paper, we present a compact planar dual band rejection Ultra Wide Band(UWB) antenna with folded parasitic element. The proposed antenna is consist of a hexagonal planar radiation patch antenna with a folded parasitic element which is located over the top and bottom surface. In contrast with other antenna which rejects single band using one method, folded parasitic element rejects dual band using one simple structure. Owing to folded parasitic element, dual-rejected properties are achieved in the Worldwide Interoperability for Microwave Access(WiMAX), C-band, and Wireless Local Area Network(WLAN) bands. The bandwidth of the proposed antenna was measured as 3.1~10.6 GHz for voltage standing wave ratio(VSWR) less than 2, except for the dual rejection bands of 3.4~4.2 GHz and 5.15~6.00 GHz.

A Design of Multi-Band Chip Antenna for Mobile Handsets (휴대단말기용 다중 대역 칩 안테나 설계)

  • Cho, In-Ho;Jung, Jin-Woo;Lee, Cheon-Hee;Lee, Yong-Hee;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.477-483
    • /
    • 2008
  • The paper introduces mobile handset multi-band chip antenna to be used on meander line PIFA structure and parasite patch. The proposed antenna uses an FR-4 substrate. The top layer is consist of meander lines PIFA structure to implement GSM900 and is connected with each rad and meander line on the via-hole for maximize space efficiency. The middle layer is designed with the signal line and gap to implement a DCS and PCS bands, the bottom layer which is added to a parasite patch on the ground can be show an adjust of frequency and impedance character by the connection of the radiators of middle layer and coupling. The fabricated antenna with the dimension of $28{\times}6{\times}4\;mm^3$. The ground plane a dimension of $45{\times}90\;mm$, designed by a commercial software CST simulator. The experimental results show that the bandwidth for(VSWR<3) is 90($875{\sim}965$) MHz in GSM900 band operation and 380($1,670{\sim}2,050$) MHz in DCS, PCS band operation. The maximum gains of antenna are 0.25 dBi, 3.65 dBi and 3.3 dBi at resonance frequencies and it has omni-directional pattern practically.

A Study on Coupling Coefficient and Resonant Frquency tunable Multi-band Internal Antenna (결합계수 및 주파수 튜너블 다중대역 내장형 안테나에 관한 연구)

  • Lee, Moon-Woo;Lee, Sang-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.59-66
    • /
    • 2010
  • In this paper, the internal antenna for mobile communication handset which is able to control both coupling coefficient and resonant frequency without any major modification of radiator and ground plane of antenna. Novel internal antenna with its controllable resonant frequency is presented for triple-band or over mobile handsets. The operating range can include GSM(880~960 MHz), GPS($1,575{\pm}10MHz$), DCS(1,710~1,880MHz), US-PCS(1,850~1,990 MHz), and W-CDMA(1,920~2,170 MHz). The proposed antenna is realized by combination of a half wavelength loaded line antenna and PIFA(Planner Inverted F Antenna). A single shorting and feeding points are used and they are common to both antenna structures. One of two inductors which is placed at each shorting post, one inductor is for adjusts amount of coupling, and the other controlling the resonant frequency in DCS/US-PCS/WCDMA bands. The inductance range for control of input impedance is between 0nH and 6.8nH, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.15dBi, 0.73dBi and 0.29dBi. The inductance range for control of the resonant frequency is between 1640MHz and 2500MHz, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.46dBi, 0.53dBi and 0.8dBi.

Triple-Band Compact Chip Antenna Using Stacked Meander Line Structure for GPS/PCS/Satellite DMB Services (적층 미엔더 라인 구조를 이용한 GPS/PCS/위성 DMB 삼중 대역 소형 칩 안테나)

  • Kim Ho-Yong;Kim Young-Do;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper, GPS/PCS/Satellite DMB compact chip antenna is designed using stacked meander line for mobile communication handset. The fabricated antenna size is $12.52mm\times19.95\times1.05mm$. The coupling is adjusted by via and arrangement among meander lines to improve FR(Frequency Ratio) and return-loss. The fabricated antenna achieve triple-band. The resonance frequencies are 1.696 GHz, 1.888 GHz and 2.680 GHz. The impedance bandwidths are 150 MHz, 120 MHz and 60 MHz. The maximum gains of antenna are 0.08 dBi, 1.70 dBi and -1.27 dBi at resonance frequencies.