• Title/Summary/Keyword: Mobile Control and Monitoring

Search Result 228, Processing Time 0.029 seconds

Auto_Test Management System for LBS Mobility Test in Wireless Mobile Networks (무선 모바일 네트워크상에서 LBS 이동성 테스트를 위한 Auto_Test 관리 시스템)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3060-3069
    • /
    • 2010
  • LBS is service technique to provide several service which are required to user by user's location information for mobile. This paper presents Auto_Test system of testing the mobility performance of mobile clients in wireless mobile networks. In spite of importance of mobility management, currently the study of mobility management is not enough, therefore we have developed modulated Auto_Test management system for resolve the mobility management. The proposed system is composed of distance-based monitoring, location-based monitoring, scenario management, mobility management and statistic management, it makes the control by individual module. Simulation results show that the proposed system outperforms the existing systems.

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot (전방향 이동로봇을 이용한 네트워크기반 원격 감시시스템 구현)

  • Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.91-97
    • /
    • 2010
  • This paper describes a development of an network based remote surveillance system using omni-directional mobile robot. the proposed surveillance system can control a mobile robot to move and examines the given place closely while the conventional surveillance system uses a fixed camera. The mobile robot in the proposed system has three omni-directional wheels to move to any given direction freely. We also developed the proposed system as robot services using Microsoft's MSRDS for a user to control the mobile robot and monitor the remote scene captured from the robot. Finally we verified the feasibility and effectiveness of the proposed system by conducting the remote operating the mobile robot and monitoring experiments in a networked environment. We also conducted a color based object detection and motion detection on image sequences acquired from a remote mobile robot in an another PC in a network environment.

Implementation of Henhouse Monitoring System Based on Ubiquitous Sensor Network (USN 기반의 계사 모니터링 시스템 구축)

  • Park, DongGook;Yoe, Hyun;Rhyu, KyeongTaek;Shin, ChangSun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.9-18
    • /
    • 2009
  • This paper proposes a Ubiquitous Henhouse Monitoring System (UHMS) that can not only monitor henhouse's conditions and raising environments, but also control the henhouse remotely by using sensor network technology. The system consists of three layers. The physical layer connects sensors with facilities. The middleware layer processes and manages data collected from the physical layer. And the application layer provides the user with the user requested services. The system provides a real-time monitoring service, a facility controlling service, an expert service, a consumer safety service, and a mobile message service via interacting with components of each layer. Finally, a henhouse model is defined and the relevant system components and the application GUIs are implemented.

Development of a Prototype Monitoring Module for Steel Bridge Repainting Robots (강교량 재도장 로봇의 모니터링 모듈 시제품 개발)

  • Seo, Myoung Kook;Lee, Ho Yeon;Park, Il Hwan;Chang, Byoung Ha
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • With the need for efficient maintenance technology to reduce maintenance costs for steel bridges, repainting robots are being developed to automate the work in narrow and poor bridge spaces. The repainting robot is equipped with a blasting module to remove paint layers and contaminants. This study developed a prototype monitoring module to be mounted on the repainting robot. The monitoring module analyzes the condition of the painting surface through a camera installed in the front, guides the direction of movement of the robot, and provides the operator with a video to check the working status after blasting through a camera installed in the back. Various image visibility enhancement technologies were applied to the monitoring module to overcome worksite challenges where incomplete lighting and dust occurs.

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Developing Mobile Safety Management System for City-Gas Supply Facilities (도시가스 공급시설을 위한 모바일 안전관리 시스템 개발)

  • Oh, Jeong-Seok;Sung, Jong-Gyu;Park, Jang-Sik;Kim, Ji-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • The Measurement of risk parameter in city-gas equipments have been measured and confirmed by human, and evolved into remote monitoring system using wireless communication. Furthermore, domestic and international industry increase the efficiency of management, which can develop remote monitoring and control system using wireless communication. However, Those wireless system might be decrease the efficiency and ease because of connecting PDA and lap-top using wire-cable when data have checked immediately from outside. This paper is able to improve efficiency of safety management on city-gas equipments by developing mobile city-gas safety management system on AR.

The Development of Measuring, Monitoring and Control System for Large Bridge Using Ubiquitous Computing Technology (유비쿼터스 컴퓨팅 기술을 활용한 대형교량의 계측, 모니터링, 통제시스템)

  • Lee Seung-Jae;Lim Jong-Kwon;Min Dae-Hong;Hwang Kyung-Hun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.182-187
    • /
    • 2004
  • Recently the application area of wireless LAN has been increased, rapidly. The application area was limited in indoor, but as the data throughput and performance of wireless LAN becomes better the application is to extend to the Internet connection and wireless(Ubiqitous) bridge in outdoor. In this paper, In this paper, the data throughput of wireless LAN in mobile environment is measured, and the usability of wireless LAN for develop bridge health monitoring system is confirmed.

  • PDF

Development of Leakage Current Sensor for Mobile Robot Chassis (이동 로봇 섀시 누전 모니터링 센서 개발)

  • Kim, Cheong Worl;Kwon, Ik Hyun;Kim, Sung Deuk;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.104-107
    • /
    • 2018
  • In this paper, we developed a sensor for monitoring the leakage current through the chassis of the robot. The leakage current sensor needs to be developed because it is a necessary part to prevent electric shock accidents that may occur through the chassis of a robot or an electric vehicle. This leakage monitoring sensor was developed to be mounted directly on the chassis of the robot. This sensor protects the control system from noise by discharging static and high-frequency noise that may occur in the chassis of the robot and monitors the leakage current by measuring the amount of current discharged through the ground. In this paper, a leakage monitoring sensor was developed with a simple structure using resistors, capacitors and OP-AMP, and the performance was evaluated.