• Title/Summary/Keyword: Mobile Anchor

Search Result 145, Processing Time 0.021 seconds

Active One-Way Ranging Method based on Post-Facto Wireless Synchronization in Wireless Sensor Networks (무선 센서망에서의 사후 무선동기 기반 능동형 단반향 거리추정 방식)

  • Nam, Yoon-Seok;Bae, Byoung-Chul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.234-242
    • /
    • 2010
  • Two-way ranging methods such as TWR and SDS-TWR have been considered for many ranging systems because these methods are useful in the absence of synchronization. To estimate the location of a mobile node, complicated ranging procedures consisting of ranging frames between an anchor node and the mobile node are performed. Supporting multiple mobile nodes such as a few hundreds or thousands and several anchor nodes, the ranging procedures have the fatal disadvantage of processing delay and inefficient traffic bandwidth. On the other hand, the one-way ranging method is simple and fast, but susceptible to network synchronization. In this paper, we propose a method to modify asynchronous ranging equations to establish exact frequency or frequency offset, a method to estimate frequencies or frequency offsets, and a method to establish post-facto synchronization with anchor nodes. The synchronization for a node pair is adapted using instantaneous time information and corresponding difference of distances can be determined. We evaluate the performance of TWR, SDS-TWR and proposed ranging algorithms.

TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application (재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

Sensor Node Localization Scheme using Four Mobile Robots (4대의 이동형 로봇을 활용한 센서 노드 위치확정 방법)

  • Lee, Woo-Sik;Kim, Nam-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.521-528
    • /
    • 2011
  • In sensor network environment, it is very important to localize sensor nodes. In order to know the position of nodes without GPS signals, the anchor robot approach is representatively used. Therefore, in this paper, we propose 4-Robot Localization Scheme (4RLS) that uses four mobile robots to efficiently localize sensor nodes for the fast time. Then, we show the improved performance of 4RLS in comparison with previously used three robot scheme through the real implementation and analysis.

Cost Effective Mobility Anchor Point Selection Scheme for HMIPv6 Networks (HMIPv6 환경에서의 최소비용 MAP 선택 기법)

  • Roh, Myoung-Hwa;Jeong, Choong-Kyo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.207-213
    • /
    • 2006
  • Mobility Anchor points are used for the mobility management in HMIPv6 networks. Currently a mobile node selects the MAP farthest away from itself as a new MAP among available candidates when it undertakes a macro hand off. With this technique, however, the traffic tends to be concentrated at a MAP with the largest domain size and the communication cost increases due to the distance between the mobile node and the MAP. In this work, we propose a novel scheme to select a MAP to minimize the communication cost, taking the mobile node's moving speed and data rate into account. To come up with the scheme we analyses the communication analyses the communication cost into the binding update cost and the data packet delivery cost, and derive an equation representing the optimal MAP domain size to minimize the total cost.

  • PDF

Performance Analysis of Cost-Effective Inter-LMA Domain Handover Scheme in PMIPv6 Networks with NEMO Supporting (NEMO를 지원하는 프록시 모바일 IPv6 네트워크에서 비용효과적인 LMA 도메인간 핸드오버 기법의 성능분석)

  • Yi, Yun-Su;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.201-210
    • /
    • 2012
  • Now, there are many mobile nodes are efficient and stable when they move to operate with variety techniques have emerged.Recently, there is a growing interest about PMIPv6(Proxy Mobile IPv6) and, in this proposal of essay is the based on the way to mobility support system will stand on the basis from PMIPv6 network to NEMO(Network Mobility). PMIPv6 is mobility support system from single domain, it actual network is composed with nested in a multiple domain structural system. The proposed technique in the domain of two or more, the LMA(Local Mobility Anchor) communication between LMA(Local Mobility Anchor) and MAG(Mobile Access Gateway) of movable domain can increase performance by handover delay and signaling.

Mutual Exclusion based Localization Technique in Mobile Wireless Sensor Networks (이동 무선 센서 네트워크에서 상호배제 기반 위치인식 기법)

  • Lee, Joa-Hyoung;Lim, Dong-Sun;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1493-1504
    • /
    • 2010
  • The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose LME, the localization technique for multiple mobile nodes in mobile wireless sensor networks. In LME, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use CTS packet type for localization initiation by mobile node and RTS packet type for localization grant by anchor node. NTS packet type is uevento reject localization by anchor node for interference avoidance.nghe experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and LME provides efficient localization.

Interference-Avoidance Based Localization for Multiple Mobile Nodes in Mobile Wireless Sensor Networks (모바일 센서네트워크에서 다중 이동 노드를 위한 간섭회피 기반 위치인식)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.91-100
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose IAL, the localization technique with interference avoidance for multiple mobile nodes in mobile wireless sensor networks. In IAL, interference is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we define LIP packet type for localization initiation by mobile node and LGP packet type for localization grant by anchor node. LRP packet type is used to reject localization by anchor node for interference avoidance. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and IAL provides efficient localization.

Performance analysis of Hierarchical Mobile IPv6 depending on the paging size (페이징 영역크기에 따른 계층적 이동 IPv6 의 성능분석)

  • 정계갑;이상욱;김준년
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.964-974
    • /
    • 2003
  • With increasing use of a personal mobile computer. the Mobile IPv6 is one of the main protocols that support mobility and complies with IPv6 specification. Similar to the mobile IPv6, the mobile IPv6 also has limitations on fast moving condition. The Hierarchical Mobile IPv6 is a solution that overcomes these limitations. The Hierarchical Mobile IPv6 is a micro mobility protocol that supports fast mobile IP handover and reduces signaling overhead with Mobility Anchor Point(MAP). But until now no paging method is applied to the Hierarchical Mobile IPv6 to reduce unnecessary signaling overhead and power consumption of mobile nodes. So, the paging mechanism for the Hierarchical Mobile IPv6 is proposed in this paper. the mechanism is implemented by making use of the destination option header and extension function and the last location algorithm. The results show that the Hierarchical Mobile IPv6 with the paging ability reduces the traffic of mobile networks by removing unnecessary binding update packet generated whenever handover takes place. Also, the larger the paging size is. the less the number of BU(Binding Update) massage generated.

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.

Service Profile Replication Scheme with Local Anchor for Next Generation Personal Communication Networks

  • Jinkyung Hwang;Bae, Eun-Shil;Park, Myong-Soon
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.215-221
    • /
    • 2003
  • It is expected that per-user customized services are widely used in next generation Personal Communication Network. To provide personalized services for each call, per-user service profiles are frequently referenced and signaling traffic is considerably large. Since the service calls are requested from the places where user stays, we can expect that the traffic is localized. In this paper, we propose a new service profile replication scheme, named Follow-Me Replication with local Anchor (FMRA). By replicating user's service profile in a user-specific location area, local anchor of each region, the signaling traffic for call and mobility can be distributed to local network. We compared the performance of the FMRA with two typical schemes: Intelligent Network-based !Central scheme and IMT-2000 based full replication scheme, as we refer it to Follow-Me Replication Unconditional (FMRU). Performance results indicate that FMRA lies between Central and FMRU schemes according to call to mobility ratio, and we identified the efficient ranges of CMR for FMRA depending on the various network parameters.