• Title/Summary/Keyword: Mo doping

Search Result 136, Processing Time 0.031 seconds

Electrical Resistance Characteristic of Ag/As-Ge-Se-S Thin film with Laser Irradiation (레이저 조사에 의한 Ag/As-Ge-Se-S 박막의 전기적 저항특성)

  • Koo, Yong-Woon;Kim, Jin-Hong;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.110-111
    • /
    • 2006
  • In this paper, we investigated resistance characteristic of chalcogenide material for next generation ReRAM nonvolatile memory device with laser irradiation. A AES is used to test Ag doping ratio into a As-Ge-Se-S thin film. A sample resistance was observed in real time with He-Ne laser(632.8nm). As a result, resistance of thermal treated As-Ge-Se-S thin film was $500{\Omega}$ which is smaller than initial $1.3M{\Omega}$. A resistance of non-treated Ag/As-Ge-Se-S thin film was $200{\Omega}$ which is lower than $35M{\Omega}$.

  • PDF

Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts

  • Nam, Chang-Mo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.649-656
    • /
    • 2010
  • Boron-doped $TiO_2$ photocatalysts were synthesized by a modified sol-gel method and their photocatalytic activities were performed and compared with those of pure synthetic and commercial $TiO_2$ catalysts under UV or visible light conditions. Pure $TiO_2$ itself exhibited very negligible photocatalytic performance under visible light conditions in the aspects of toluene decomposition reactions, although significant decomposition potential was observed as expected with UV light conditions. However, boron doping over $TiO_2$ significantly improved photocatalytic activity particularly under visible conditions, where over 95% degradation of toluene was achieved with 1wt% $B-TiO_2$ within 2 hrs. All the decomposition reactions seemed to follow pseudo first-order kinetics. The effects of boron-doping and its characteristics are further discussed through the kinetic studies and comparison of results.

Sol-gel Spin-coating of ZnO Co-doped with (F, Ga) as A Transparent Conducting Thin Film ((F, Ga) 코도핑된 ZnO 투명 전도 박막의 솔-젤 제조와 특성)

  • Nam, Gil Mo;Kwon, Myoung Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.91-95
    • /
    • 2014
  • (F,Ga) co-doped ZnO thin film on glass substrate was fabricated via a simple non-alkoxide sol-gel spin-coating. Contrary to the F single doped ZnO thin film, the (F,Ga) co-doped thin film showed a significant reduce in electrical resistivity after a second post-heat-treatment in reducing environment. The resulting decrease in electrical resistivity with Ga co-doping is considered to be resulted from the increases both carrier density and mobility. The optical transmittance of the (F,Ga) co-doped thin film in the visible range showed higher transmittance with Ga co-doping compared with F single doped ZnO thin film.

Optical Properties of MgMoO4:Dy3+,Eu3+ Phosphors Prepared with Different Eu3+ Molar Ratios (Eu3+ 이온의 몰 비 변화에 따른 MgMoO4:Dy3+,Eu3+ 형광체의 광학 특성)

  • Kim, Jung Dae;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • The effects of $Eu^{3+}$ doping on the structural, morphological, and optical properties of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors prepared by solid-state reaction technique were investigated. XRD patterns exhibited that all the synthesized phosphors showed a monoclinic system with a dominant (220) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. The surface morphology of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors was studied using scanning electron microscopy and the grains showed a tendency to agglomerate as the content of $Eu^{3+}$ ions increased. The excitation spectra of the phosphor powders were composed of a strong charge transfer band centered at 294 nm in the range of 230~340 nm and two intense peaks at 354 and 389 nm, respectively, arising from the $^6H_{15/2}{\rightarrow}^6P_{7/2}$ and $^6H_{15/2}{\rightarrow}^4M_{21/2}$ transitions of $Dy^{3+}$ ions. The emission spectra of the $Mg_{0.85}MoO_4$:10 mol% $Dy^{3+}$ phosphors without incorporating $Eu^{3+}$ ions revealed a strong yellow band centered at 573 nm resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$. As the content of $Eu^{3+}$ was increased, the intensity of the yellow emission was gradually decreased, while that of red emission band located at 614 nm began to appear, approached a maximum value at 10 mol%, and then decreased at 15 mol% of $Eu^{3+}$. These results indicated that white light emission could be achieved by controlling the contents of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the $MgMoO_4$ host crystal.

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.411-420
    • /
    • 2020
  • Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

Mössbauer Studies of Double Perovskite Sr2Fel-xCrxMoO6

  • Kim, Sung-Baek;Ryu, Hong-Joo;Kim, Je-Hoon;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.129-132
    • /
    • 2003
  • We investigated the crystallographic and magnetic properties of double perovskite $Sr_2Fe_{l-x}Cr_{x}MoO_{6}$ (x=0.0, 0.01, 0.03, 0.05, and 0.10). Mossbauer spectra of the $Sr_2Fe_{l-x}Cr_{x}MoO_{6}$ have been taken at various temperatures ranging from 15 to 415 K. As the temperature increased towards $T_{c}$(415 K), the Mossbauer spectra showed line broadening and 1, 6 and 3, 4 line-width differences because of anisotropic hyperfine field fluctuation. The Mossbauer spectra indicated that an anisotropic field fluctuation of +H ( $P_{+}$=0.85) was greater than that of -H ($P_{-}$=0.15). We also calculated the field fluctuation frequency factors and the temperature dependence of anisotropy energies from its relaxation rate. We interpreted the effect of Cr ($t^3$$_{2g}$) doping as a decrease in the anisotropy energy.

A Study on Composition and Dosimetry of the $CaSO_4$ Phosphors ($CaSO_4$ 열형광체의 조성과 선량측정에 관한 연구)

  • Lee, Duek-Kyu
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • [ $CaSO_4$ ] thermoluminescent phosphors was made by sintring the $CaSO_4$ after doping the transition elements Tm, Pd, Dy, V, Mo, Zr. The maximum Peaks are found in the measured $CaSO_4$(Tm, Pd, Dy, V, Mo, Zr) TL glow curve at $130^{\circ}C,\;110^{\circ}C,\;140^{\circ}C,\;100^{\circ}C$, and $120^{\circ}C$ when the heating rate is $5^{\circ}C/sec$. The activation energy of the main peak has been estimated by the peak shape method. The estimated activation energies are 1.02eV, 1.32eV, 1.12eV, 0.80eV, and 1.17eV, respectively. The thermoluminescence process in $CaSO_4$(Tm, Pd, Dy, V, Mo, Zr)are found to the 2nd order when the main peak of the glow curve is analyzed by peak shape method. The dose responses of $CaSO_4$(Tm, Pd, Dy, V, Mo, Zr) phosphors are linear within $4{\times}10^{-4}{\sim}1Gy$ of X-rays.

  • PDF

Optimization of 4H-SiC DMOSFETs by Adjustment of the Dimensions and Level of the p-base Region (P형 우물 영역의 도핑 농도와 면적에 따른 4H-SiC 기반 DMOSFET 소자 구조의 최적화)

  • Ahn, Jung-Joon;Bahng, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Jung, Hong-Bae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.513-516
    • /
    • 2010
  • In this work, a study is presented of the static characteristics of 4H-SiC DMOSFETs obtained by adjustment of the p-base region. The structure of this MOSFET was designed by the use of a device simulator (ATLAS, Silvaco.). The static characteristics of SiC DMOSFETs such as the blocking voltages, threshold voltages, on-resistances, and figures of merit were obtained as a function of variations in p-base doping concentration from $1\;{\times}\;10^{17}\;cm^{-3}$ to $5\;{\times}\;10^{17}\;cm^{-3}$ and doping depth from $0.5\;{\mu}m$ to $1.0\;{\mu}m$. It was found that the doping concentration and the depth of P-base region have a close relation with the blocking and threshold voltages. For that reason, silicon carbide DMOSFET structures with highly intensified blocking voltages with good figures of merit can be achieved by adjustment of the p-base depth and doping concentration.

Electrical characteristics of p-PEDOT/n-GZO heterojunction (p-PEDOT/n-GZO heterojunction의 전기적 특성)

  • Lee, Jae-Sang;Park, Dong-Hoon;Koo, Sang-Mo;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1332_1333
    • /
    • 2009
  • The electrical properties of an inorganic/organic heterojunction has been investigated by spin coating the p-type polymer poly(3,4 ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS) on an n-type gallium doping zinc oxide (GZO) film. Current-voltage (I-V) characteristics of the fabricated heterojunction diodes have a good rectifying characteristics. The barrier height is calculated 0.8 eV.

  • PDF

Upconversion Photoluminescence Properties of PbMoO4:Er3+/Yb3+ Phosphors Synthesized by Microwave Sol-Gel Method

  • Lim, Chang Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.480-486
    • /
    • 2015
  • $Pb_{1-x}MoO_4:Er^{3+}/Yb^{3+}$ phosphors with various doping concentrations of $Er^{3+}$ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}=0.05$, 0.1, 0.2, and $Yb^{3+}=0.2$, 0.45) are successfully synthesized using a microwave sol-gel method, and the up-conversion photoluminescence properties are investigated. Well-crystallized particles, which are formed after heat treatment at $900^{\circ}C$ for 16 h, exhibit a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, the $Pb_{0.7}MoO_4:Er_{0.1}Yb_{0.2}$ and $Pb_{0.5}MoO_4:Er_{0.05}Yb_{0.45}$ particles exhibit a strong 525 nm emission band, a weak 550 nm emission band in the green region, and a very weak 655 nm emission band in the red region. The Raman spectra of the doped particles indicate the presence of strong peaks at higher and lower frequencies induced by the disordered structures of $Pb_{1-x}MoO_4$ through the incorporation of the $Er^{3+}$ and $Yb^{3+}$ ions into the crystal lattice, which results in the unit cell shrinkage accompanying the new phase formation of the $MoO_{4-x}$ group.