• 제목/요약/키워드: Mo and Zr additives

검색결과 7건 처리시간 0.019초

붕규산 소다 유리의 분상 및 화학적 내구성에 대한 첨가제의 영향 (Effects of Additives on the Phase Sepration and the Chemical Durability of Sodium Borosilicate Glasses)

  • 현상훈;천광수;송원선
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.173-183
    • /
    • 1988
  • Effects of oxide additives such as MoO3, MnO2 ZrO2 and Fe2O3 on the phase separation and the chemical durability of sodium borosilicate glasses which are the host of waste glasses have been investigated as the basic study on the nuclear-waste immobilization through vitrification. MoO3 and MnO2 were found to be phase separation promotors which increased the temperature as well as catalyzed nucleation and growth for the phase separation of the 10Na2-O-3OB2O3-6OSiO2 (wt%) parent glass within the immiscibility region. The glasses had the interconnected phase-separated structure as the amount of addition increased. On the other hand, ZrO2 and Fe2O3 were inhibitors which showed the reverse effects to the above promotors. It was also found that addition of MoO3 could cause the phase separaton of the 20Na2O-10B2O3-70SiO2(wt%) glass even within the miscibility region. Addition of ZrO2 and Fe2O3 increased the chemical durability of the parent glass within the immiscibility region. Within the miscibility region, however, the addition of 1.96 wt % of MoO3 increased the chemical durability considerably, while MnO2 had little effects.

  • PDF

Fe/Zr/Mo 혼합 산화물 매체의 Redox 반응을 이용한 수소 저장 및 방출 (Hydrogen Storage and Release by Redox Reaction of Fe/Zr/Mo Mixed Oxide Mediums)

  • 제한솔;강은지;이수경;박주식;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.616-624
    • /
    • 2011
  • Hydrogen storage and release of Fe/Zr/Mo mixed oxide mediums were investigated by hydrogen reduction and water splitting oxidation($Fe_3O_4+4H_2{\rightleftharpoons}3Fe+4H_2O$). As the results of TPR/O, Mo was an additive to enhance the reactivity of water splitting oxidation as well as the stability of the medium. On the other hand, it seemed that $ZrO_2$ additive provided the passway for the diffusion of gaseous chemicals on the medium in repeated redox cycles. Among the Fe/Zr/Mo mediums, a FeZrMo-7 medium (Fe/Zr/Mo=80/13/7mol%) exhibited the best performance with good durability during five repeated redox cycles. The amount of hydrogen evolved on the medium was maintained at ca. 10.7mmol-$H_2$/g-medium corresponding to the hydrogen storage amount of ca. 2.2wt%.

MoS$_2$$Fe_2O_3$ 첨가제가 지르코니아계 용사코팅층의 마모마찰 특성에 미치는 영향 (Effect of MoS$_2$ and $Fe_2O_3$ Additives on the Tribological Behavior of the Plasma Sprayed Zirconia Based Coatings)

  • 신종한;임대순;안효석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.93-99
    • /
    • 1997
  • High Temperature wear behavior of plasma sprayed ZrO$_2$ and MoS$_2$, $Fe_2O_3$ coatings were investigated for high temperature wear resistance applications. The MoS$_2$, $Fe_2O_3$ added powders containing 2.5, 5.0, 7.5, 10.0 mol% of $MoS_2$, $Fe_2O_3$ for plasma spray were made by spray drying method. Wear test were performed at temperature ranges from room temperature to 600$\circ$C. The microstructural change of coatings and the worn. surface were examined by SEM and XRD. In ZrO$_2$ coating, the coefficient of friction and wear amount of room temperature to 400$\circ$C was increased with temperature and decreased with temperature over 400$\circ$C. The coefficient of friction and wear amount of MoS$_2$ added coatings were increased with temperature, but those of $Fe_2O_3$ added coatings had lower coefficient of friction and higher wear resistance than ZrO$_2$ coating.

  • PDF

Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구 (Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives)

  • 조원준;유혜진;모용기;안화승
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

다공성 $ZrTiO_4$ 재료의 제조 및 특성 (Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material)

  • 허근;명성재;이용현;전명표;조정호;김병익;심광보
    • 한국결정성장학회지
    • /
    • 제18권1호
    • /
    • pp.5-9
    • /
    • 2008
  • 코디어라이트는 낮은 열팽창계수를 가지나, 디젤 배기가스 담체로써 사용하기에는 기계적 강도가 낮고, 황에 대한 내산성이 취약한 문제를 가지고 있다. 본 연구에서는 $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3$$Nb_2O_5$가 첨가된 $ZrTiO_4$의 물성을 XRD, SEM, UTM 및 열팽창계수 측정 장치를 사용하여 측정하고 분석하였다. $ZrTiO_4$$TiO_2$$ZrO_2$를 출발원료로 볼빌에서 혼합한 후 $1240^{\circ}C$ 이상의 온도에서 3시간 하소함으로써 monoclinic 구조로 합성되었다. 꺽임강도 및 열팽창계수 측정용 시편은 $ZrTiO_4$와 첨가제를 혼합 성형하고, $1300^{\circ}C$에서 3 시간 소성함으로써 얻어졌다. 소결된 시편의 기공율은 첨가제의 함량이 5%로 증가함에 따라 첨가제의 종류에 관계없이 감소하였으나, 첨가제의 함량이 10% 로 증가하면 기공율은 포화되었다. 꺾임강도는 $Al_2O_3$를 5, 10 wt% 첨가 시 큰 폭으로 증가하였으나, 나머지 첨가제에 대해서는 꺾임강도가 감소하였다. $ZrTiO_4$의 열팽창계수 $(1000^{\circ}C)$$Nb_2O_5$를 제외하고는 첨가제가 증가할수록 계속적으로 감소하였으며, 특히, $SiO_2$가 첨가된 경우 가장 낮은 열팽창계수를 나타내었다.

천연가스 자동차용 삼원촉매의 $\lambda$-윈도우 영역 개선 (Improvement of $\lambda$--window Range of the Three-Way Catalyst for Natural Gas Vehicles)

  • 최병철;정필수
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.92-100
    • /
    • 2000
  • The model gas reaction tests were carried out to investigate the purification characteristics of methane on the exclusive catalyst for NGV. The experiment was conducted with the factors which affect the conversion efficiency of methane, such as Redox ratio, coexistence components of CO, MO, $H_2$O, precious metals and additives. The catalyst loaded with larger amount of pd and with additive La showed lower light-off temperature. In the presence of CO and NO, the conversion efficiency of methane was varied according to the kind of additive loaded. The conversion efficiency of methane was dropped for the catalyst loaded with La under lean air-fuel ratio, while it increased for the one loaded with Ti+Zr for the same condition. It was shown that the water vapor inhibited methane from oxidation by its poisoning on the surface of catalyst.

  • PDF

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.