• Title/Summary/Keyword: Mo/Mo

Search Result 17,265, Processing Time 0.047 seconds

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

Study on Tourism Demand Forecast and Influencing Factors in Busan Metropolitan City (부산 연안도시 관광수요 예측과 영향요인에 관한 연구)

  • Kyu Won Hwang;Sung Mo Nam;Ah Reum Jang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.915-929
    • /
    • 2023
  • Improvements in people's quality of life, diversification of leisure activities, and changes in population structure have led to an increase in the demand for tourism and an expansion of the diversification of tourism activities. In particular, for coastal cities where land and marine tourism elements coexist, various factors influence their tourism demands. Tourism requires the construction of infrastructure and content development according to the demand at the tourist destination. This study aims to improve the prediction accuracy and explore influencing factors through time series analysis of tourism scale using agent-based data. Basic local governments in the Busan area were examined, and the data used were the number of tourists and the amount of tourism consumption on a monthly basis. The univariate time series analysis, which is a deterministic model, was used along with the SARIMAX analysis to identify the influencing factor. The tourism consumption propensity, focusing on the consumption amount according to business types and the amount of mentions on SNS, was set as the influencing factor. The difference in accuracy (RMSE standard) between the time series models that did and did not consider COVID-19 was found to be very wide, ranging from 1.8 times to 32.7 times by region. Additionally, considering the influencing factor, the tourism consumption business type and SNS trends were found to significantly impact the number of tourists and the amount of tourism consumption. Therefore, to predict future demand, external influences as well as the tourists' consumption tendencies and interests in terms of local tourism must be considered. This study aimed to predict future tourism demand in a coastal city such as Busan and identify factors affecting tourism scale, thereby contributing to policy decision-making to prepare tourism demand in consideration of government tourism policies and tourism trends.

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests (주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석)

  • Jin-Mo Kim;Geonwoo Kim;Si-Hyeong Kim;Dohyeong Kim;Dookie Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.120-129
    • /
    • 2023
  • To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.

Development of Strategies to Improve Water Quality of the Yeongsan River in Connection with Adaptation to Climate Change (기후변화의 적응과 연계한 영산강 수질개선대책 개발)

  • Yong Woon Lee;Won Mo Yang;Gwang Duck Song;Yong Uk Ryu;Hak Young Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.187-195
    • /
    • 2023
  • Almost all of the water from agricultural dams located to the upper of the Yeongsan river is supplied as irrigation water for farmland and thus is not discharged to the main stream of the river. Also, most of the irrigation water does not return to the river after use, adding to the lack of flow in the main stream. As a result, the water quality and aquatic health of the river have become the poorest among the four major rivers in Korea. Therefore, in this study, several strategies for water quality improvement of the river were developed considering pollution reduction and flow rate increase, and their effect analysis was performed using a water quality model. The results of this study showed that the target water quality of the Yeongsan river could be achieved if flow increase strategies (FISs) are intensively pursued in parallel with pollution reduction. The reason is because the water quality of the river has been steadily improved through pollution reduction but this method is now nearing the limit. In addition, rainfall-related FISs such as dam construction and water distribution adjustment may be less effective or lost if a megadrought continues due to climate change and then rainfall does not occur for a long time. Therefore, in the future, if the application conditions for the FISs are similar, the seawater desalination facility, which is independent of rainfall, should be considered as the priority installation target among the FISs. The reason is that seawater desalination facilities can replace the water supply function of dams, which are difficult to newly build in Korea, and can be useful as a climate change adaptation facility by preventing water-related disasters in the event of a long-term megadrought.

Study on the Factors Influencing the Investment Performance of Domestic Venture Capital Funds (국내 벤처펀드의 투자성과에 영향을 미치는 요인에 관한 연구)

  • InMo Yeo;HyeonJu Park;KwangYong Gim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.63-75
    • /
    • 2023
  • This study conducted empirical analysis on the factors affecting the investment performance of 205 domestic venture funds (with a total liquidation amount of 7.25 trillion KRW) newly formed from 2007 to 2017 and completely liquidated as of the end of 2022. Due to the nature of private equity funds, obtaining empirical data is extremely challenging, especially for data post-COVID-19 era liquidations. Nevertheless, despite these challenges, it is meaningful to analyze the impact on the investment returns of domestic venture funds using the most recent data available from the past 10 years. This study categorized the factors influencing venture fund performance into external environmental factors and internal factors. External environmental factors included "economic cycles," "stock markets," "venture markets," and "exit markets," while internal factors included the fund management company's capabilities in terms of "experience," "professional personnel," and "assets under management (AUM)." The fund structure was also categorized into "fund size" and "fund length" for comparative analysis. In summary, the analysis yielded the following results: First, the 3-year government bond yield, which represents economic cycles well, was found to have a significant impact on fund performance. Second, the average 3-month KOSDAQ index return after fund formation had a statistically significant positive effect on fund performance. Third, the number of IPOs, indicating the competition intensity at the time of venture fund liquidation, was shown to have a negative effect on fund performance. Fourth, it was observed that the larger the AUM of the fund management company, the better the fund's returns. Finally, venture fund returns showed variations depending on the year of formation (Vintage). Therefore, when individuals consider investing in venture funds, it is considered a highly effective investment strategy to construct an investment portfolio taking into account not only external environmental factors and internal fund factors but also the vintage year.

  • PDF

Evaluation of the effect of a Position Error of a Customized Si-Bolus Produced using a 3D-Printer: Cervical Cancer Radiation Treatment (3D 프린터를 이용하여 제작한 맞춤형 Si-Bolus의 위치 오차 효과 평가: 자궁경부암 방사선 치료)

  • Seong Pyo Hong;Ji Oh Jeong;Seung Jae Lee;Byung Jin Choi;Chung Mo Kim;Soo Il Jung;Yun Sung Shin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.7-13
    • /
    • 2023
  • Purpose: In this study, we evaluated the effect of using a customized bolus on dose delivery in the treatment plan when cervical cancer protruded out of the body along with the uterus and evaluated reproducibility in patient set-up. Materials & Methods: The treatment plan used the Eclipse Treatment Planning System (Version 15.5.0, Varian, USA) and the treatment machine was VitalBeam (Varian Medical Systems, USA). The radiotherapy technique used 6 MV energy in the AP/PA direction with 3D-CRT. The prescribed dose is 1.8 Gy/fx and the total dose is 50.4 Gy/28 fx. Semiflex TM31010 (PTW, Germany) was used as the ion chamber, and the dose distribution was analyzed and evaluated by comparing the planned and measured dose according to each position movement and the tumor center dose. The first measurement was performed at the center by applying a customized bolus to the phantom, and the measurement was performed while moving in the range of -2 cm to +2 cm in the X, Y, and Z directions from the center assuming a positional error. It was measured at intervals of 0.5 cm, the Y-axis direction was measured up to ±3 cm, and the situation in which Bolus was set-up incorrectly was also measured. The measured doses were compared based on doses corrected to CT Hounsfield Unit (HU) 240 of silicon instead of the phantom's air cavity. Result: The treatment dose distribution was uniform when the customized bolus was used, and there was no significant difference between the prescribed dose and the actual measured value even when positional errors occurred. It was confirmed that the existing sheet-type bolus is difficult to compensate for irregularly shaped tumors protruding outside the body, but customized Bolus is found to be useful in delivering treatment doses uniformly.

  • PDF

Situation of Geological Occurrences and Utilization, and Research Trends of North Korean Coal Resources (북한 석탄 자원의 부존 및 활용현황과 연구동향)

  • Sang-Mo Koh;Bum Han Lee;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.281-292
    • /
    • 2024
  • North Korea relies heavily on coal as the primary energy source, playing an important role in all energy demand sectors except for the transportation sector. Approximately half of the total electricity is generated through coal-fired power plants, and coal is used to produce heat and power for all industrial facilities. Furthermore, coal has been a significant contributor to earning foreign currency through long-term exports to China. Nevertheless, since the 1980s, indiscriminate mining activities have led to rapid depletion of coal production in most coal mines. Aging mine facilities, lack of investment in new equipment, shortages of fuel and electricity, difficulties in material supply, and frequent damage from flooding have collectively contributed to a noticeable decline in coal production since the late 1980s. North Korea's coal deposits are distributed in various geological formations from the Proterozoic to the Cenozoic, but the most critical coal-bearing formations are Ripsok and Sadong formations distributed in the Pyeongnam Basin of the Late Paleozoic from Carboniferous to Permian, which are called as Pyeongnam North and South Coal Fields. Over 90% of North Korea's coal is produced in these coal fields. The classification of coal in North Korea differs from the international classification based on coalification (peat, lignite, sub-bituminous coal, bituminous coal, and anthracite). North Korean classification based on industrial aspect is classified into bituminous coal, anthracite, and low-grade coal (Chomuyeontan). Based on the energy factor, it is classified into high-calorie coal, medium calorie coal, and low-calorie coal. In North Korea, the term "Chomuyeontan" refers to a type of coal that is not classified globally and is unique to North Korea. It is a low-grade coal exclusively used in North Korea and is not found or used in any other country worldwide. This article compares North Korea's coal classification and the international coal classification of coal and provides insights into the geological characteristics, reserves, utilization, and research trends of North Korean coal resources. This study could serve as a guide for preparing scientific and industrial agendas related to coal collaboration between North Korea and South Korea.

CT Examinations for COVID-19: A Systematic Review of Protocols, Radiation Dose, and Numbers Needed to Diagnose and Predict (COVID-19 진단을 위한 CT 검사: 프로토콜, 방사선량에 대한 체계적 문헌고찰 및 진단을 위한 CT 검사량)

  • Jong Hyuk Lee;Hyunsook Hong;Hyungjin Kim;Chang Hyun Lee;Jin Mo Goo;Soon Ho Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1505-1523
    • /
    • 2021
  • Purpose Although chest CT has been discussed as a first-line test for coronavirus disease 2019 (COVID-19), little research has explored the implications of CT exposure in the population. To review chest CT protocols and radiation doses in COVID-19 publications and explore the number needed to diagnose (NND) and the number needed to predict (NNP) if CT is used as a first-line test. Materials and Methods We searched nine highly cited radiology journals to identify studies discussing the CT-based diagnosis of COVID-19 pneumonia. Study-level information on the CT protocol and radiation dose was collected, and the doses were compared with each national diagnostic reference level (DRL). The NND and NNP, which depends on the test positive rate (TPR), were calculated, given a CT sensitivity of 94% (95% confidence interval [CI]: 91%-96%) and specificity of 37% (95% CI: 26%-50%), and applied to the early outbreak in Wuhan, New York, and Italy. Results From 86 studies, the CT protocol and radiation dose were reported in 81 (94.2%) and 17 studies (19.8%), respectively. Low-dose chest CT was used more than twice as often as standard-dose chest CT (39.5% vs.18.6%), while the remaining studies (44.2%) did not provide relevant information. The radiation doses were lower than the national DRLs in 15 of the 17 studies (88.2%) that reported doses. The NND was 3.2 scans (95% CI: 2.2-6.0). The NNPs at TPRs of 50%, 25%, 10%, and 5% were 2.2, 3.6, 8.0, 15.5 scans, respectively. In Wuhan, 35418 (TPR, 58%; 95% CI: 27710-56755) to 44840 (TPR, 38%; 95% CI: 35161-68164) individuals were estimated to have undergone CT examinations to diagnose 17365 patients. During the early surge in New York and Italy, daily NNDs changed up to 5.4 and 10.9 times, respectively, within 10 weeks. Conclusion Low-dose CT protocols were described in less than half of COVID-19 publications, and radiation doses were frequently lacking. The number of populations involved in a first-line diagnostic CT test could vary dynamically according to daily TPR; therefore, caution is required in future planning.

Myelin Content in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Quantitative Assessment with a Multidynamic Multiecho Sequence

  • Roh-Eul Yoo;Seung Hong Choi;Sung-Won Youn;Moonjung Hwang;Eunkyung Kim;Byung-Mo Oh;Ji Ye Lee;Inpyeong Hwang;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.226-236
    • /
    • 2022
  • Objective: This study aimed to explore the myelin volume change in patients with mild traumatic brain injury (mTBI) with post-concussion syndrome (PCS) using a multidynamic multiecho (MDME) sequence and automatic whole-brain segmentation. Materials and Methods: Forty-one consecutive mTBI patients with PCS and 29 controls, who had undergone MRI including the MDME sequence between October 2016 and April 2018, were included. Myelin volume fraction (MVF) maps were derived from the MDME sequence. After three dimensional T1-based brain segmentation, the average MVF was analyzed at the bilateral cerebral white matter (WM), bilateral cerebral gray matter (GM), corpus callosum, and brainstem. The Mann-Whitney U-test was performed to compare MVF and myelin volume between patients with mTBI and controls. Myelin volume was correlated with neuropsychological test scores using the Spearman rank correlation test. Results: The average MVF at the bilateral cerebral WM was lower in mTBI patients with PCS (median [interquartile range], 25.2% [22.6%-26.4%]) than that in controls (26.8% [25.6%-27.8%]) (p = 0.004). The region-of-interest myelin volume was lower in mTBI patients with PCS than that in controls at the corpus callosum (1.87 cm3 [1.70-2.05 cm3] vs. 2.21 cm3 [1.86-3.46 cm3]; p = 0.003) and brainstem (9.98 cm3 [9.45-11.00 cm3] vs. 11.05 cm3 [10.10-11.53 cm3]; p = 0.015). The total myelin volume was lower in mTBI patients with PCS than that in controls at the corpus callosum (0.45 cm3 [0.39-0.48 cm3] vs. 0.48 cm3 [0.45-0.54 cm3]; p = 0.004) and brainstem (1.45 cm3 [1.28-1.59 cm3] vs. 1.54 cm3 [1.42-1.67 cm3]; p = 0.042). No significant correlation was observed between myelin volume parameters and neuropsychological test scores, except for the total myelin volume at the bilateral cerebral WM and verbal learning test (delayed recall) (r = 0.425; p = 0.048). Conclusion: MVF quantified from the MDME sequence was decreased at the bilateral cerebral WM in mTBI patients with PCS. The total myelin volumes at the corpus callosum and brainstem were decreased in mTBI patients with PCS due to atrophic changes.