• Title/Summary/Keyword: MnO$_2$

Search Result 2,703, Processing Time 0.034 seconds

A study on synthesis of $Li_{x}Mn_{2}O_{4}$ for asecondary battery with various $MnO_{2}$ structure (다양한 $MnO_{2}$ 구조에 따른 2차전지용 $Li_{x}Mn_{2}O_{4}$ 합성에 관한 연구)

  • 김익진;이영훈;이종호;이재한;장동환;이경희;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.600-608
    • /
    • 1996
  • Specific structural properties of Li intercalation reaction into the spinel relatedmanganese dioxide, $Li_{x}Mn_{2}O_{4}(0.2{\leq}x{\leq}2.0)$, are investigated by X-ray diffractional and electrochemical studies of Li/1M $LiClO_{4}$-propylene carbonate solution/$Li_{x}Mn_{2}O_{4}$ cell. The effect of the chemical composition and the reaction temperature on electrochemical parameter of $Li_{x}Mn_{2}O_{4}$ are studied by the phenomena of phase-transition, analysis of crystal lattice, fine structure, and thermal analysis. Treatment of the spinel $Li_{x}Mn_{2}O_{4}$ with aqueous acid was found to result in conversiton of $Li_{x}Mn_{2}O_{4}$ to nearly pure $MnO_{2}$, as evidenced by a reduction in the lattice constant $a_{c}$ from 8.255 to $8.031\;{\AA}$. At a composition range of $0.2{\leq}x{\leq}0.6$ in $Li_{x}Mn_{2}O_{4}$ the reduction proceeded in a homogeneous phase, which was characterized by a constant voltage of 3.9~3.7 V together with a lattice constant of $8.255\;{\AA}$.

  • PDF

Fabrication of LiMn2O4 Thin-Film Rechargeable Batteries by Sol-Gel Method and Their Electrochemical Properties (졸-겔 방법을 이용한 LiMn2O4 박막 이차 전지 제작 및 전기화학적 특성 조사)

  • Lee, J.H.;Kim, K.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • Structural and electrochemical properties of spinel oxide $LiMn_2O_4$ thin films prepared by using a sol-gel method on Pt/Ti/$SiO_2$/Si substrates were investigated. When Li/Mn molar ratio of the film was smaller than 0.5, $Mn_2O_3$hase was found to coexist with $LiMn_2O_4$. Half-cell batteries fabricated using the $LiMn_2O_4$ films as the cathode were put into chargedischarge (C-D) cycles and the change in structural properties of the cathode after the cycles was examined by X-ray diffraction and Raman spectroscopy. As the C-D cycle number increases, the discharge capacity of pure $LiMn_2O_4$ battery gradually decreases, being reduced to 72% of the initial capacity at 300 cycles. Such capacity fading is attributable to the decrease in the number of $Li^+$ ions that return to the tetrahedral sites of the spinel structure during the discharge step and the resultant increase in $Mn^{4+}$ density in the film. Also, $Mn_2O_3$ phase gradually appeared in the film as the cycle number increases.

Synthesis of Li2MnSiO4 by Solid-state Reaction (고상반응법을 이용한 Li2MnSiO4 합성)

  • Kim, Ji-Su;Shim, Joong-Pyo;Park, Gyung-Se;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.398-402
    • /
    • 2012
  • Synthesis of $Li_2MnSiO_4$ was attempted by the conventional solid-state reaction method, and the phase formation behavior according to the change of the calcination condition was investigated. When the mixture of the three source materials, $Li_2O$, MnO and $SiO_2$ powders, were used for calcination in air, it was difficult to develop the $Li_2MnSiO_4$ phase because the oxidation number of $Mn^{2+}$ could not be maintained. Therefore, two-step calcination was applied: $Li_2SiO_3$ was made from $Li_2O$ and $SiO_2$ at the first step, and $Li_2MnSiO_4$ was synthesized from $Li_2SiO_3$ and MnO at the second step. It was easy to make $Li_2MnSiO_3$ from $Li_2O$ and $SiO_2$. $Li_2MnSiO_4$ single phase was developed by the calcination at $900^{\circ}C$ for 24 hr in Ar atmosphere as the oxidation of $Mn^{2+}$ was prevented. However, the $Li_2MnSiO_4$ was ${\gamma}-Li_2MnSiO_4$, one of the polymorph of $Li_2MnSiO_4$, which could not be used as the cathode materials in Li-ion batteries. By applying the additional low temperature annealing at $400^{\circ}C$, the single phase ${\beta}-Li_2MnSiO_4$ powder was synthesized successfully through the phase transition from ${\gamma}$ to ${\beta}$ phase.

Synthesis and characterigation of $LiMn_2O_4$ from chemical manganese dioxide(CMD) (Chemical manganese dioxide(CMD)를 이용한 $LiMn_2O_4$ 합성 및 특성평가)

  • Kim, Jun-Il;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Sun, Yang-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.452-452
    • /
    • 2009
  • HEV용 리튬 이차전지의 양극물질로서 $LiMn_2O_4$는 일반적으로 사용되고 있는 $LiCoO_2$에 비해 값이 저렴하고 독성이 낮으며, 높은 전압과 좋은 율 특성을 갖는 물질이다. 하지만 고온에서 전이금속인 Mn이 전해액으로 용출되어 급격한 용량감소로 인한 짧은 수명의 단점을 가지고 있다. 흔히 전구체로 쓰이는 $MnO_2$, $Mn_3O_4$, MnOOH등은 전기 분해법을 이용한 EMD가 주로 이용된다. 본 연구에서는 출발 물질로 $KMnO_4$$Mn(NO_3)_2$를 수용액 반응을 시켜서 농도, 온도변화에 따른 입자 형상 및 크기와 결정상의 변화를 관찰하고, 화학적 방법으로 얻어진 $MnO_2$와 LiOH를 합성하여 각각의 $LiMn_2O_4$를 비교 분석하고자한다.

  • PDF

Effect of MnO$_2$ addition on the piezoelectric properties in 0.9Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-0.1Pb$TiO_3$relaxor ferroelectrics (0.9Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-0.1Pb$TiO_3$계 완화형 강유전체에서 MnO$_2$ 첨가에 따른 압전물성의 변화)

  • Park, Jae-Hwan;Park, Jae-Gwan;Kim, Byung-Kook;Kim, Yoon-Ho
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.498-501
    • /
    • 2001
  • The effects of MnO$_2$ addition on the piezoelectric properties in 0.9Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-0.1Pb$TiO_3$ relaxor ferroelectrics were studied in the ferroelectricity-dominated temperature range from -4$0^{\circ}C$ to 3$0^{\circ}C$. Dielectric, piezoelectric properties and electric-field- induced strain were examined to clarify the effect of MnO$_2$ addition. As the added amount of MnO$_2$ increase. dielectric and piezoelectric properties of Pb(Mg$_{1/3}$ Nb$_{2/3}$O$_3$ became harder. From the experimental results, it was suggested that Mn behaves as a ferroelectric domain pinning element.

  • PDF

Electrochemical Characteristics of LiMnO2 for Lithium Secondary Battery

  • Jin Bo;Jun Dae-Kyoo;Gu Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.76-80
    • /
    • 2006
  • Well-defined orthorhombic $LiMnO_2\;and\;LiCo_{0.1}Mn_{0.9}O_2$ were synthesized by a solid-state reaction and quenching process. X-ray diffraction (XRD) results revealed that the as-synthesized powders showed an orthorhombic phase of a space group with Pmnm. The $Li/LiMnO_2\;and\;Li/LiCo_{0.1}Mn_{0.9}O_2$ cells were constituted and cycled galvanostatically in the voltage range of 2.0-4.3 V vs. $Li/Li^+$ at a current density of $0.5\;mA\;cm^{-2}$ at room temperature and $50^{\circ}C$, respectively. The results demonstrated that the highest specific capacity of $Li/LiMnO_2$ cells at room temperature and $50^{\circ}C$ was 95 and $155\;mAh\;g^{-1}$, respectively. As for $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells, the highest specific capacity at room temperature and $50^{\circ}C$ was 160 and $250\;mAh\;g^{-l}$, respectively. It could be seen that the performance of $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells was better than that of $Li/LiMnO_2$ cells.

Synthesis of $PbLaTiO_{3}$: Mn powders by hydrothermal method

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.63-67
    • /
    • 2003
  • Synthesis of $PbLaTiO_{3}$ : Mn powders containing La and Mn was carried out using $PbO,\;TiO_{2},\;La_{2}O_{3}\;and\;MnO_{2}$ as starting materials by hydrothermal method. In the synthesis of single phase $PbLaTiO_{3}$ : Mn powder containing La and Mn, the optimal x value corresponding to La substitution was 0.01 which corresponds to $0.99(Pb_{1-x}La_{2x/3}TiO_{3})+0.01MnO_{2}$. The optimal conditions for the preparation of the powder synthesis were 8 M-KOH solvent of hydrothermal solvent, $270^{\circ}C$ of reaction temperature and 24 hrs of run time. It was found that the synthesized powders had spherical morphology with average particle size of 70 nm and specific surface area of $5.5\;m^{2}/g$.

Formation Reaction of Mn-Zn Ferrite by Wet Process (습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF

Effect of Oxygen Annealing on the Set Voltage Distribution Ti/MnO2/Pt Resistive Switching Devices

  • Choi, Sun-Young;Yang, Min-Kyu;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.385-389
    • /
    • 2012
  • Significant improvements in the switching voltage distribution are required for the development of unipolar resistive memory devices using $MnO_x$ thin films. The $V_{set}$ of the as-grown $MnO_x$ film ranged from 1 to 6.2 V, whereas the $V_{set}$ of the oxygen-annealed film ranged from 2.3 to 3 V. An excess of oxygen in an $MnO_x$ film leads to an increase in $Mn^{4+}$ content at the $MnO_x$ film surface with a subsequent change in the $Mn^{4+}/Mn^{3+}$ ratio at the surface. This was attributed to the change in $Mn^{4+}/Mn^{3+}$ ratios at the $MnO_x$ surface and to grain growth. Oxygen annealing is a possible solution for improving the switching voltage distribution of $MnO_x$ thin films. In addition, crystalline $MnO_x$ can help stabilize the $V_{set}$ and $V_{reset}$ distribution in memory switching in a Ti/$MnO_x$/Pt structure. The improved uniformity was attributed not only to the change of the crystallinity but also to the redox reaction at the interface between Ti and $MnO_x$.

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.