• Title/Summary/Keyword: MnBi

Search Result 174, Processing Time 0.039 seconds

Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor (ZnO-Bi2O3-Mn3O4-Co3O4 바리스터의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.961-968
    • /
    • 2012
  • In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).

Characteristics of Mn-Ni-Co system for automobile fuel shortage detecting sensor with $Bi_2O_3$ addition ($Bi_2O_3$를 첨가한 Mn-Ni-Co계 써미스타의 자동차 연료 부족 감지용 센서 특성)

  • 윤중락;이헌용;김두용;오창섭
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.455-462
    • /
    • 1996
  • Automobile Fuel Shortage Detecting Sensor, in this paper, was fabricated by using heat dissipation coefficient difference between gasoline and air condition the NTC thermistor of Mn-Ni Co system with the composition ratio of Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt%. The condition of sensor operation is that, for turn-on characteristics, the time of arriving at 135mA must be less than 180 second when the DC voltage of 11V is applied in the air condition of -10.deg. C and that, for turn-off characteristics, the saturation current must be less than 60mA when the DC voltage of 15V is applied in the gasoline condition of 60.deg. C. It is known, from the experimental results, that the resistance range and B-constant for the Automobile Fuel Shortage Detecting Sensor with dimension of 5*3*0.9mm were 850-1150.ohm. and 1150-1250.deg. C, respectively and the resistance range and B-constant were agree with that of sensor operation condition. When Bi$_{2}$O$_{3}$ of 0-0.5wt% was added to Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt% composition, the resistivity and B-value were 380-430(.ohm.-cm) and 1930 - 2030, respectively. Particularly, for Bi$_{3}$O$_{3}$ of 0.25-0.5wt%, the sintering density of over 90% and the operation characteristics necessary to Automobile Fuel Shortage Detecting Sensor were obtained. The difference of heat dissipation coefficient gasoline and air condition was 15 times.

  • PDF

Fabrication of $BaTiO_3-PTCR$ Ceramic Resister Prepared by Direct Wet Process (습식 직접합성법을 이용한 PTCR 소자개발 연구)

  • 이경희;이병하;이희승
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.61-65
    • /
    • 1985
  • $BaTiO_3$ powders doped with $BaTiO_3$ and $Nb_2O_5$ at 9$0^{\circ}C$ for 1hr. were synthesized by Direct Wet Process. These powders were very homogeneous and fine particle size. To obtain the highe PTCR effect AST($1/3Al_2O_3$.$3/4SiO_2$.$1/4TiO_2$) and $MnO_2$ were added in the semiconduc-ting $BaTiO_3$. In this case $Bi_2O_3$ and $MnO_2$ were used in the form of $Bi(NO)_3$ and $MnCl_2$.$4H_2O$ solution for Direct Wet Process. $BaTiO_3$ doped Nb2O5 and $MnO_2$ demostrated greater PTCR effect than $BaTiO_3$ doped $Nn_2O_5$ only.

  • PDF

Effect of α-Fe Content on the Magnetic Properties of MnBi/α-Fe Nanocomposite Permanent Magnets by Micro-magnetic Calculation

  • Li, Y.Q.;Yue, M.;Zuo, J.H.;Zhang, D.T.;Liu, W.Q.;Zhang, J.X.;Guo, Z.H.;Li, W.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.245-249
    • /
    • 2013
  • A finite element model was built for MnBi/${\alpha}$-Fe nanocomposite permanent magnets, and the demagnetization curves of the magnets were simulated by micro-magnetic calculation. The microstructure of the cubic model is composed of 64 irregular grains with an average grain size of 20 nm. With the volume fraction of soft magnetic phase (t vol. %) ranged from 5 to 20 vol. %, both isotropic and anisotropic nanocomposite magnets show typical single-phase permanent magnets behavior in their demagnetization curves, illustrating good intergranular exchange coupling effect between soft and hard magnetic phases. With the increase of volume fraction of soft magnetic phase in both isotropic and anisotropic magnets, the coercive force of the magnets decreases monotonically, while the remanence rises at first to a peak value, then decreases. The optimal values of maximum energy products of isotropic and anisotropic magnets are 84 and $200kJ/m^3$, respectively. Our simulation shows that the MnBi/${\alpha}$-Fe nanocomposite permanent magnets own excellent magnetic properties and therefore good potential for practical applications.