• Title/Summary/Keyword: Mn-incorporated $TiO_2$

Search Result 4, Processing Time 0.016 seconds

Enhanced 2-Chorophenol Photodecomposition using Nano-Sized Mn-incorporated TiO2 Powders Prepared by a Solvothermal Method

  • Kim, Dongjin;Im, Younghwan;Jeong, Kyung Mi;Park, Sun-Min;Um, Myeong-Heon;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2295-2298
    • /
    • 2014
  • To effectively destruct 2-chlorophenol, a representative sterile preservative, nanometer-sized Mn (0.5, 1.0, 3.0 mol %)-incorporated $TiO_2$ powders were synthesized by a solvothermal method. XRD result demonstrated that the Mn ingredients were perfectly inserted into $TiO_2$ framework. The Mn-$TiO_2$ particles exhibited an anatase structure with a particle size of below 20 nm. The absorbance was shifted to the higher wavelength on Mn-$TiO_2$ compared to that of $TiO_2$. Otherwise, the PL intensities which has a close relationship for recombination between holes and electrons significantly decreased on Mn-$TiO_2$. The photodecomposition for 2-chlorophenol in a liquid system was enhanced over Mn-doped $TiO_2$ compared with pure $TiO_2$: 2-chlorophenol of 50 ppm was completely decomposed after 12 h when 1.0 mol % Mn-$TiO_2$ was used. Consequently, the core of this paper is as follows. introducing Mn into $TiO_2$ framework reduced the band-gap, moreover, it played as an electron capture resulted to lower recombination between electrons and holes during photocatalytic reaction for removal of 2-cholophenol.

Chemical Speciations of Elements in the Fe-Mn Crusts by Sequential Extraction (단계별 추출법을 이용한 망간각 구성 원소의 존재 형태)

  • Kim, Jong-Uk;Moon, Jai-Woon;Chi, Sang-Bum;Ko, Young-Tak;Lee, Hyun-Bok
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 2004
  • Sequential extraction was carried out on twenty two subsamples of three ferromanganese crusts from three seamounts (Lemkein, Lomilik, and Litakpooki) near the Marshall Islands in the western Pacific. The extraction was designed to fractionate Fe-Mn crust forming elements into low defined groups: (1) exchangeable and carbornate, (2) Mn-oxide, (3) Fe-oxyhyd.oxide, and (4) residual fraction. X-ray diffraction result shows that target material were well removed by each extraction step except for CFA in phosphatized crusts generation. According to chemical analysis of each leachate, most of elements in the Fe-Mn crusts are bound with two major phases. Mn, Ba, Co, Ni, Zn, (Fe, Sr, Cu, and V) are strongly bounded with Mn-oxide $({\delta}-MnO_2)$ phase, whereas Fe, Ti, Zr, Mo, Pb, Al, Cu,(V, P, and Zn) show chemical affinity with Fe-oxyhydroxide phase. This result indicates that significant amount of Al, Ti, and Zr can not be explained by detrital origin. Ca, Mg, K, and Sr mainly occur as exchangeable elements and/or carbonate phase. Outermost layer 1 and inner layer 2 which are both young crusts generations are similar in chemical speciations of elements. However, some of Fe-oxyhydroxide bounded elements (Pb, Y, Mo, Ba, Al, and V) in phosphatized innermost layer 3 are released during phosphatization and incorporated into phosphate (Pb, Y, Mo, and Ba) or Mn-oxide phase (Al and V). Our sequential extraction results reveal that chemical speciations of elements in the hydrogenetic crusts are more or less different from interelemental relationship calculated by statistical method based on bulk chemistry.

Enhanced Piezoelectric Properties of (1-x)[0.675BiFeO3-0.325BaTiO3]-xLiTaO3 Ternary System by Air-Quenching

  • Akram, Fazli;Malik, Rizwan Ahmed;Lee, Soonil;Pasha, Riffat Asim;Kim, Myong Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.489-494
    • /
    • 2018
  • Lead free $(1-x)(0.675BiFeO_3-0.325BaTiO_3)-xLiTaO_3$ (BFBTLT, x = 0, 0.01, 0.02, and 0.03, with 0.6 mol% $MnO_2$ and 0.4 mol% CuO) were prepared by a solid state reaction method, followed by air quenching and their crystalline phase, morphology, dielectric, ferroelectric and piezoelectric properties were explored. An X-ray diffraction study indicates that lithium (Li) and tantalum (Ta) were fully incorporated in the BFBT materials with the absence of any secondary phases. Dense ceramic samples (> 92 %) with a wide range of grain sizes from $3.70{\mu}m$ to $1.82{\mu}m$ were obtained in the selected compositions ($0{\leq}x{\leq}0.03$) of BFBTLT system. The maximum temperatures ($T_{max}$) were mostly higher than $420^{\circ}C$ in the studied composition range. The maximum values of maximum polarization ($P_{max}{\approx}31.01{\mu}C/cm^2$), remnant polarization ($P_{rem}{\approx}22.82{\mu}C/cm^2$) and static piezoelectric constant ($d_{33}{\approx}145pC/N$) were obtained at BFBT-0.01LT composition with 0.6 mol% $MnO_2$ and 0.4 mol% CuO. This study demonstrates that the high $T_{max}$ and $d_{33}$ for BFBTLT ceramics are favorable for industrial applications.

Application of Bond Valence Method to Estimate the Valence Charge Distributi on in the Metal-to-Oxygen Bonding Spheres in Perovskites

  • Nhat, Hoang Nam;Chau, Dinh Van;Thuong, Dinh Van;Hang, Nguyen Thi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.75-92
    • /
    • 2015
  • This paper presents the application of the bond valence method to estimate the valence charge distribution in several perovskite systems: $La_{{\tilde{1}}x}Pb_xMnO_3$ (x=0.1-0.5), $La_{0.6}Sr_{0.{\tilde{4}}x}Ti_xMnO_3$ (x=0.0-0.25) and $La_{{\tilde{1}}x}Sr_xCoO_3$ (x=0.1-0.5); the reviewing of their crystal structures is also incorporated. The results showed the failure of the elastic bonding mechanism in all studied systems and revealed the general deficit of the valence charge in their unit cells. This valence deficit was not associated with the structural defects and was not equally localized in all coordination spheres. As the content of substitution increased, the charge deficit declined systematically from balanced level, signifying the transfer of valence charge from the ${\tilde{B}}O_6$ to ${\tilde{A}}O_{12}$ spheres. This transfer depended on the valence deviation of spheres and the average reached near 2 electron per unit cell. The possible impact of the limitted accuracy of the available structural data on the bond valence results has also been considered.