Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2295

Enhanced 2-Chorophenol Photodecomposition using Nano-Sized Mn-incorporated TiO2 Powders Prepared by a Solvothermal Method  

Kim, Dongjin (Department of Chemistry, College of Science, Yeungnam University)
Im, Younghwan (Department of Chemistry, College of Science, Yeungnam University)
Jeong, Kyung Mi (Department of Engineering in Energy and Applied Chemistry, Silla University Korea)
Park, Sun-Min (Korean Institutes of Ceramic Engineering and Technology (KICET))
Um, Myeong-Heon (Division of Chemical Engineering, College of Engineering, Kongju National University)
Kang, Misook (Department of Chemistry, College of Science, Yeungnam University)
Publication Information
Abstract
To effectively destruct 2-chlorophenol, a representative sterile preservative, nanometer-sized Mn (0.5, 1.0, 3.0 mol %)-incorporated $TiO_2$ powders were synthesized by a solvothermal method. XRD result demonstrated that the Mn ingredients were perfectly inserted into $TiO_2$ framework. The Mn-$TiO_2$ particles exhibited an anatase structure with a particle size of below 20 nm. The absorbance was shifted to the higher wavelength on Mn-$TiO_2$ compared to that of $TiO_2$. Otherwise, the PL intensities which has a close relationship for recombination between holes and electrons significantly decreased on Mn-$TiO_2$. The photodecomposition for 2-chlorophenol in a liquid system was enhanced over Mn-doped $TiO_2$ compared with pure $TiO_2$: 2-chlorophenol of 50 ppm was completely decomposed after 12 h when 1.0 mol % Mn-$TiO_2$ was used. Consequently, the core of this paper is as follows. introducing Mn into $TiO_2$ framework reduced the band-gap, moreover, it played as an electron capture resulted to lower recombination between electrons and holes during photocatalytic reaction for removal of 2-cholophenol.
Keywords
Mn-incorporated $TiO_2$; UV; PL; Destruction of 2-chlorophenol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ku, Y.; Leu, R.-M.; Lee, K.-C. Water Res. 1996, 30, 2569.   DOI   ScienceOn
2 Ilisz, I.; Dombi, A.; Mogyorosi, K.; Farkas, A.; Dekany, I. Appl. Catal. B 2002, 39, 247.   DOI
3 Gaya, U. I.; Abdullah, A. H.; Zainal, Z.; Hussein, M. Z. J. Hazard. Mater. 2009, 168, 57.   DOI   ScienceOn
4 Maugans, C. B.; Akgerman, A. Water Res. 2003, 37, 319.   DOI
5 Sharma, M.; Jain, T.; Singh, S.; Pandey, O. P. Solar Energy 2012, 86, 626.   DOI
6 Wilson, W.; Manivannan, A.; Subramanian, V. R. Appl. Catal. A 2012, 441-442, 1.   DOI
7 Pulido Melian, E.; Gonzalez Diaz, O.; Dona Rodriguez, J. M.; Arana, J.; Perez Pena, J. Appl. Catal. A 2013, 455, 227.   DOI
8 Bertelli, M.; Selli, E. J. Hazard Mater. 2006, 138, 46.   DOI   ScienceOn
9 Ivanda, M.; Music, S.; Popovic, S.; Gotic, M. J. Mol. Struct. 1999, 480-481, 645.   DOI
10 Kongsuebchart, W.; Praserthdam, P.; Panpranot, J.; Sirisuk, A.; Supphasrirongjaroen, P.; Satayaprasert, C. J. Cryst. Growth 2006, 297, 234.   DOI   ScienceOn
11 Abbas, Z.; Holmberg, J. P.; Hellström, A. K.; Hagström, M.; Bergenholtz, J.; Hassellöv, M.; Ahlberg, E. Colloid. Surf. A 2011, 384, 254.   DOI
12 Gurkan, Y. Y.; Turkten, N.; Hatipoglu, A.; Cinar, Z. Chem. Eng. J. 2012, 184, 113.   DOI
13 Shaban, Y. A.; El Sayed, M. A.; El Maradny, A. A.; Al Farawati, R. Kh.; Al Zobidi, M. I. Chemosphere 2013, 91, 307.   DOI
14 Fabbri, D.; Bianco Prevot, A.; Zelano, V.; Ginepro, M.; Pramauro, E. Chemosphere 2008, 71, 59.   DOI   ScienceOn
15 Gupta, V. K.; Jain, R.; Mittal, A.; Saleh, T. A.; Nayak, A.; Agarwal, S.; Sikarwar, S. Mater. Sci. Eng. C 2012, 32, 12.   DOI   ScienceOn
16 Liang, W.; Li, J.; Jin, Y. Build. Environ. 2012, 51, 345.   DOI   ScienceOn
17 Selli, E.; Bianchi, C. L.; Pirola, C.; Cappelletti, G.; Ragaini, V. J. Hazard. Mater. 2008, 153, 1136.   DOI   ScienceOn
18 Liu, B.; Zhao, X.; Zhao, Q.; He, X.; Feng, J. J. Electron Spectrosc. Related Phenomena 2005, 148, 158.   DOI
19 Kong, J.-T.; Shi, S.-Y.; Zhu, X.-P.; Ni, J.-R. J. Environ. Sci. 2007, 19, 1380.   DOI   ScienceOn