• Title/Summary/Keyword: Mn concentration

Search Result 1,093, Processing Time 0.033 seconds

Synthesis of LiMn2O4 Powders Using Li-Ion Secondary Battery by SHS Process (SHS합성법에 의한 리튬이온이차전지용 정극활물질 LiMn2O4 의 제조)

  • Jang, Chang-Hyun;Nersisyan, Hayk;Kim, Jung-Han;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.503-508
    • /
    • 2005
  • A simple and effective method for the synthesis of LiMn$_{2}$O$_{4}$ powder as a cathode material for lithium secondary battery is reported. Micrometer size LiMn$_{2}$O$_{4}$ was prepared by combustion synthesis technique employing initial mixture of l.l LiNO$_{3}$ -1.3Mn-0.7MnO$_{2}$-1NaCl composition. Parametric study of the combustion process including molar ratio of Mn/MnO$_{2}$ and NaCl concentration were carried out under air atmosphere. The combustion products obtained were additionally heat treated at the temperature 900$^{\circ}C$ and the washed by distilled water. The results of charging-discharging characteristics revealed that LiMn$_{2}$O$_{4}$ cell synthesized in the presence of NaCl had a high capacity and much better reversibility than one formed without NaCl An approximate chemical mechanism for LiMn$_{2}$O$_{4}$ formation is proposed.

Effects of Mn on the Growth and Nutrient Status of Pinus densiflora Seedlings in Nutrient Culture Solution (소나무 묘목의 생장 및 영양상태에 미치는 Mn의 영향)

  • 이충화;이승우;진현오;정진현;이천용
    • The Korean Journal of Ecology
    • /
    • v.25 no.5
    • /
    • pp.349-352
    • /
    • 2002
  • The effects of Mn on growth and nutrient status of Pinus densiflora seedlings grown in a nutrient culture solution were investigated. Mn concentrations was added as manganese chloride at 0, 30 and 60ppm to the nutrient culture solution. The 2-year-old seedlings were transplanted into the solution maintained at pH 4.0, and grown for 90 days in a greenhouse. The Mn treatment induced a significant reduction in the dry weight growth of the seedlings. The relative growth rate(RGR) and net assimilation rate(NAR) of the seedlings decreased with increasing Mn concentrations in the nutrient culture solutions. For the nutrient status of the seedlings, Ca and Mg content in trunk and root was least in 60ppm Mn treatment, and Mn content in needle was about 3 times more than in root. Also the net photosynthetic rate of the seedlings was significantly lower both in 30ppm and 60ppm Mn treatment compared to them in 0ppm. This result suggests that the reductions in the RGR and NAR of the seedlings may be resulted from the inhibition of net photosynthesis by the mixed effect of lower nutrient uptake of roots and excess accumulation of Mn in needle.

Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer (만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과)

  • Choi, Beom-Kyu;Koh, Dong-Chan;Ha, Kyoo-Chul;Cheon, Su-Hyun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.29-45
    • /
    • 2007
  • Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.

Magnetic and Electronic Properties of Reduced Rutile Ti1-xMnxO2-δ Thin Films

  • Kim, Kwang-Joo;Park, Young-Ran;Ahn, Geun-Young;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.12-15
    • /
    • 2006
  • Magnetic and electronic properties of reduced rutile titanium dioxide $(TiO_{2-\delta})$ thin films doped by Mn have been investigated. The present sol-gel-grown semiconducting $TiO_{2-\delta}:Mn$ films exhibit a ferromagnetic behavior at room temperature for a limited range of Mn content. The Mn-doped films have p-type electrical conductivity with the carrier concentration near $10^{19}\;cm^{-3}$. The observed room-temperature ferromagnetism is believed to be intrinsic but not related to free carriers such as holes. Oxygen vacancies are likely to contribute to the room-temperature ferromagnetism-trapped carriers in oxygen vacancies can mediate a ferromagnetic coupling between neighboring $Mn^{+3}$ ions. The energy band-gap change due to the Mn doping measured by spectroscopic ellipsometry exhibits a red-shift compared to that of the undoped sample at low Mn content. It is explainable in terms of strong spin-exchange interactions between Mn ion and the carrier.

Bleaching of Kraft Pulp with Lignin - Degrading Enzymes

  • Harazono, Koich;Kondo, Ryuichrto;Sakai, Kokki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 1997
  • An unbleached hardwood kraft pulp was bleached in vitro with partially purified manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624 without the addition of MnSO$_4$ in the presence of oxalate, malonate or gluconate known as manganese chelator, When the pulp was treated without the addition of MnSO$_4$, the pulp brightness increased by about 10 points in the presence of 2 mM oxalate, but the brightness did not significantly increase in the presence of 50 mM malonate. Residual MnP activity decreased faster during the bleaching with MnP without MnSO$_4$ in the presence of malonate than in the presence of oxalate. Oxalate reduced MnO$_2$ which already existed in the pulp or was produced from $Mn^{2+}$ by oxidation with MnP and thus supplied $Mn^{2+}$ to the MnP system. Thus, bleaching of hardwood kraft pulp with MnP, using manganese originally existing in the pulp, became possible in the presence of oxalate, a good manganese chelator and reducing reagent. Properties of partially purified MnPs from liquid cultures of white rot fungi, Ganoderma sp. YK-505, Phanerochaete sordida YK-624 and Phanerochaete chrysosporium were compared. MnP from Ganoderma sp. YK-505 was superior to MnPs from P. sordida YK-624 and P. chrysosporium in stabilities against high temperature and high concentration of $H_2O$$_2$. The MnP from Ganoderma sp. YK-505 differed in pH-activity profile from other MnPs. These data suggest that MnP from Ganoderma sp. YK-505 has different structure from those of other fungi. Bleaching of hardwood kraft pulp using the MnP from ganoderma sp. YK-505 is now in progress.

  • PDF

Characteristics of Heavy Metal Distribution in Surface Sediments from the south Sea of Korea (남해 대륙붕 표층퇴적물 중 중금속 원소의 분포 특성)

  • 조영길;이창복
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.338-356
    • /
    • 1994
  • Sediment samples from the continental shelf of the South Sea of Korea are analysed to determine the concentration of Al, Fe, Mn, cu, Ni, Zn, Co, Cr and Pb. among these samples, fine-grained sediments were also analysed by a sequential extraction technique to know geochemical forms of the metals in this environments. The total concentration of Al, Fe, Cr, Ni, Cu and Zn in bulk sediments decreased gradually with the increase of distance from the coastal zone. This distribution patterns are well coincide with grain size distribution. However, the patterns of Mn, co and Pb do not follow such and overall distribution. The concentration of Pb, particularly, did not show any features in areal distribution, which may be result from different pathways to the sediments, compared to the other metals. the speculation data show that a considerable amount of Cd, Mn and Co are bounded in the carbonate fraction, accounting for 42.8%, 40.3% and 30.6%, respectively. Cu, Zn, Mn and Fe are largely associated to oxide fraction with proportions of 34.4%, 23.1%, 15.5% and 13.7%, respectively. However, the metals in residual fraction account for more than 50% of the total metal concentration, except for Mn. These observations emphasize that residual fraction in the dominant component controlling the elemental concentration.quartz and glauconite grains.Accordingly,these sediments are interpreted as an extension part of transgressive sand deposit that are widely distributed on the continental shalf floor of southern Yellow Sea.

  • PDF

Composition-dependent Magnetic Properties of Si1-xMnx (0.1 < x <0.9) Single Crystals

  • Hwang, Young-Hun;Um, Young-Ho;Park, Hyo-Yeol
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.56-60
    • /
    • 2010
  • In this study, we investigated the optical, magnetic, and electrical transport properties of $Si_{1-x}Mn_x$ (0.1 < x < 0.9) single crystals grown by the vertical Bridgman method. The alloys with a Mn concentration of up to 64% demonstrated weak ferromagnetic ordering around $T_C=30\;K$. The $Si_{0.25}Mn_{0.75}$ and $Si_{0.18}Mn_{0.82}$ alloys showed weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, as confirmed by magnetization, neutron diffraction, and transport studies.

The Role of Mn on the PTCR Characteristics of La-doped $BaTiO_3$ Ceramics (La-doped $BaTiO_3$ 세라믹스에서 PTCR 특성에 미치는 Mn의 영향)

  • 김성희;이준형;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.140-144
    • /
    • 1995
  • The role of Mn on the PTCR characteristics of La-doped BaTiO3 ceramics was studied. The calculated Ns value was increased with Mn concentration and consequently pmax and pmin were increased. The behavior of pmin was explained by the Jonker's theory, and Ns value of 6.35×1017m-2 was well agreed with the theoretical estimate of Jonker's. The value state of Mn was measured by ESR, and changed around Tc from +3 in tetragonal phase to +2 in cubic phase. Therefore, the amount of electron trap increased at Tc led to the great improvement of PTC R characteristics.

  • PDF

Effects of Mn Doping on Structural and Magnetic Properties of Multiferroic BiFeO3 Nanograins Made by Sol-gel Method

  • Raghavender, A.T.;Hong, Nguyen Hoa
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • [ $BiFeO_3$ ]is a multiferroic material that attracts attentions of many research groups due to its potential as being ferroelectric and ferromagnetic above room temperature. We have prepared both undoped- and Mn-doped $BiFeO_3$ by sol-gel auto-ignition method. Doping of Mn has resulted in decreasing grain size from 60 to 32 nm. X-ray diffraction data show that the samples are pure and single-phase. Infrared measurements on $BiFeO_3$ and Mn-doped $BiFeO_3$ revealed intrinsic stretching vibrations of tetrahedral sites of $Fe^{3+}$-O and of octahedral $Bi^{3+}$-O as well. On the other hand, as the Mn concentration increases, the magnetic moment of $BiFeO_3$ increases. It gives some suggestions in manipulating structural and magnetic properties of $BiFeO_3$ by doping Mn.

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.