Browse > Article
http://dx.doi.org/10.4283/JMAG.2006.11.1.012

Magnetic and Electronic Properties of Reduced Rutile Ti1-xMnxO2-δ Thin Films  

Kim, Kwang-Joo (Department of Physics, Konkuk University)
Park, Young-Ran (Department of Physics, Konkuk University)
Ahn, Geun-Young (Department of Physics, Kookmin University)
Kim, Chul-Sung (Department of Physics, Kookmin University)
Publication Information
Abstract
Magnetic and electronic properties of reduced rutile titanium dioxide $(TiO_{2-\delta})$ thin films doped by Mn have been investigated. The present sol-gel-grown semiconducting $TiO_{2-\delta}:Mn$ films exhibit a ferromagnetic behavior at room temperature for a limited range of Mn content. The Mn-doped films have p-type electrical conductivity with the carrier concentration near $10^{19}\;cm^{-3}$. The observed room-temperature ferromagnetism is believed to be intrinsic but not related to free carriers such as holes. Oxygen vacancies are likely to contribute to the room-temperature ferromagnetism-trapped carriers in oxygen vacancies can mediate a ferromagnetic coupling between neighboring $Mn^{+3}$ ions. The energy band-gap change due to the Mn doping measured by spectroscopic ellipsometry exhibits a red-shift compared to that of the undoped sample at low Mn content. It is explainable in terms of strong spin-exchange interactions between Mn ion and the carrier.
Keywords
ferromagnetism; titanium dioxide; oxygen vacancy; Mn-doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854 (2001)   DOI   ScienceOn
2 N. H. Hong, J. Sakai, and A. Hassini, Appl. Phys. Lett. 84, 2602 (2004)   DOI   ScienceOn
3 T. Droubay, S. M. Heald, V. Shutthanandan, S. Thevuthasan, S. A. Chambers, and J. Osterwalder, J. Appl. Phys. 97, 046103 (2005)   DOI   ScienceOn
4 Z. Wang, J. Tang, L. D. Tung, W. Zhou, and L. Spinu, J. Appl. Phys. 93, 7870 (2003)   DOI   ScienceOn
5 M. S. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 65, 161201 (2002)   DOI   ScienceOn
6 K. J. Kim and Y. R. Park, J. Appl. Phys. 94, 867 (2003)   DOI   ScienceOn
7 Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, Phys. Rev. B 38, 10600 (1988)   DOI   ScienceOn
8 R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976)   DOI
9 P. A. Stampe, R. J. Kennedy, Y. Xin, and J. S. Parker, J. Appl. Phys. 92, 7114 (2002)   DOI   ScienceOn
10 Y. R. Park and K. J. Kim, Thin Solid Films 484, 34 (2005)   DOI   ScienceOn
11 N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Phys. Rev. B 70, 195204 (2004)   DOI   ScienceOn
12 Y. J. Kim, S. Thevuthasan, T. Droubay, A. S. Lea, C. M. Wang, V. hutthanandan, R. P. Sears, B. Taylor, and B. Sinkovic, Appl. Phys. Lett. 84, 3531 (2004)   DOI   ScienceOn
13 H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Nature Mater. 3, 221 (2004)   DOI   ScienceOn
14 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000)   DOI   ScienceOn
15 J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)   DOI   ScienceOn