• Title/Summary/Keyword: Mn(III)-porphyrin

Search Result 14, Processing Time 0.029 seconds

The Syntheses of Mn(III) Porphyrin Derivatives and Its Photoreactivity (Mn(III)-porphyrin 유도체의 합성과 그 광반응성)

  • Park, Yong-Tae;Noh, Sang-Gyun;Chung, Jae-Gew
    • Journal of Hydrogen and New Energy
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1990
  • We are interested in studying the artificial photolysis of water which mimics the natural plant photosynthesis. In the artificial system there should be a proper photosensitizer, electron donor and electron acceptor. Since Mn-tetramer is known to be the essential part for the oxygten-evolving system in the natural photosynthesis, it is important to know or study the reactivity of Mn-porphyrins. As a model for the Mn-tetramer in the natural photosynthesis, we prepared the lipophilic and hydrophilic Mn-porphyrins. For the lipophilic porphyrin with long hydrocarbon chain, the long hydrocarbon chain was inserted in the porphyrin ring formation step. For the hydrophilic porphyrin, the porphyrin was sulfonated with sulfuric acid. These syntheses of lipophilic and hydrophilic Mn-porphyrins are significant, since the behaviors of these compounds will be different in the microemulsions or vesicles. We also found that the Mn-porphyrins were photoreduced in the microemulsion and water in the presence of amines.

  • PDF

Kinetic Investigation of Styrene Derivatives Oxidation Mechanism by Mn(III)-porphyrin (Mn(III)-porphyrin에 의한 Styrene 유도체의 산화반응 메카니즘 연구)

  • Na, Hun-Gil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.206-212
    • /
    • 2002
  • The catalytic activities of several metalloporphyrin, wherein the porphyrins are TPP(5,lO,l5,20-Tetraphenyl-21H,23H-porphyrin) and (p-X)TPP (X =$CH_{3}O$, $CH_{3}$, F, Cl), are reported for the oxidation of styrene and it's derivatives. The electronic effects of substrates and porphyrins on the catalytic activity of metalloporphyrin containing the transition metal ion such as Mn(III) was discussed. Investigating the correlation between the Michaelis-Menten's rate parameters and the substituent constants, we are going to analyze the influences on the changes of catalytic activity or rate determining step during the processes of the formation and the dissociation of the M-oxo-olefin.

Mn(III)-, Fe(III)-porphyrin Catalyzed Oxidation of cycloolefins (Mn(III)-, Fe(III)-porphyrin 유도체를 촉매제로 한 시클로올레핀 화합물의 산화반응)

  • Na, Hun-Gil;Park, Yu-Chul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.41-48
    • /
    • 1998
  • The catalytic oxidations of several cycloolefins in $CH_2Cl_2$ were been investigated using Mn(III)-, Fe(III)-porphyrin complexes as a catalyst and sodium hypochlorite as a terminal oxidant. Porphyrins were $(p-CH_3O)TTP,\;(p-CH_3)TTP,$ TPP, (p-F)TPP, (p-Cl)TPP and $(F_{20})TPP$ (TPP = tetraphenylporphyrin), and olefins were cyclopentene, cyclohexene and cycloheptene. The substrate conversion yield was discussed according to the substituent effects of metalloporphyrin. The conversion yield of substrate by changing the substituent of TPP increased in the order of $p-CH_3O$ < $p-CH_3$ < H < p-F < p-Cl, which was consistent with the sequence of $4{\sigma}$ values of TPP. The conversion of cycloalkene followed the order of $C_5\;<\;C_6\;<\;C_7$.

Supramolecular Micelle from Amphiphilic Mn(III)-porphyrin Derivatives as a Potential MRI Contrast Agent

  • Choi, Kwang-Mo;Lee, Do-Hyung;Jang, Woo-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.639-644
    • /
    • 2010
  • Amphiphilic porphyrin derivatives have been synthesized and characterized by $^1H$ NMR and MALDI-TOF-MS. All porphyrin derivatives showed very high solubility to aqueous medium as well as hydrophobic organic solvent. The UV-vis absorption of the porphyrin derivatives showed significant broadness and decrease of maximum intensity of absorption in aqueous solution. SEM experiment showed the formation of spherical micellar structure. The $T_1$ relaxation time of aqueous medium was drastically decreased in the presence of Mn(III)-porphyrin derivative, indicating that the supramolecular micelle has strong possibility to use as a $T_1$ contrast agent.

Redox Chemistry and Autoreduction of Non-$\mu$-oxo Dimer-Forming [5,10,15,20-Tetrakis(2,6-dichlorophenyl)porphyrinato] Manganese(III) Chloride by Hydroxide Ion

  • 전승원;이효경;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.929-934
    • /
    • 1996
  • The electrochemistry and the reaction of non-μ-oxo dimer-forming [5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinato] manganese(Ⅲ) chloride [(Cl8TPP)MnⅢCl] with tetraethylammonium hydroxide in water [-OH(H2O)] have been investigated by electrochemical and spectroscopic methods under anaerobic conditions. The stronger autoreduction of (C18TPP)MnⅢCl by -OH(H2O) in comparison with (Me12TPP)MnⅢCl by -OH(CH3OH) in MeCN is explained as the influence of electronic effects on substituted phenyl groups bonded to meso-position of porphyrin ring and the positive shift of reduction potential (-0.11 V) for (C18TPP)MnⅢCl. The autoreduction of manganese(Ⅲ) porphyrin to manganese (Ⅱ) by this process is only observed when one axial position is occupied by a ligating solvent and OH- coordinates the other axial site. The results are discussed in relation to the mechanisms for the reduction of manganese(Ⅲ) porphyrin.

X-ray Structure and Electrochemical Properties of Ferrocene-Substituted Metalloporphyrins

  • Kim, Jin Won;Lee, Seok U;Na, Yong Hwan;Lee, Gi Pyeong;Do, Yeong Gyu;Jeong, Se Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1316-1322
    • /
    • 2001
  • Transition metal complexes of novel mono- and di-ferrocene-substituted porphyrins have been synthesized and characterized by structural and electrochemical methods. The X-ray structures of Mn(FPTTP)Cl and Mn(DFTTP)Cl showed the distorted square pyramidal coordination geometry with syn configuration of chloride and ferrocenyl substituents. The electrochemistry of ferrocene-substituted porphyrins and their metal complexes has been determined to elucidate the ${\pi}-conjugation$ effect of the porphyrin ring. The ferrocenyl group of H2FPTTP underwent a reversible one-electron transfer process at 0.30 V, indicating the good electron donating effect of the phorphyrin ring to the ferrocene substituent. The redox potential of the ferrocenyl subunit and porphyrin ring was affected by the central metal ions of the metalloporphyrins, that is, Zn(II) and Ni(II) made the oxidation of ferrocene much easier and Mn(III) made it harder. The ferrocene subunits of H2DFTTP interacted electrochemically with each other with peak splitting of 0.21 V. The strength of the electrochemical interactions between the two ferrocenyl substituents can be controlled by central metal ions of metalloporphyrins.

Surface-functionalized Hexagonal Mesoporous Silica Supported 5-(4-Carboxyphenyl)-10,15,20-triphenyl Porphyrin Manganese(III) Chloride and Their Catalytic Activity

  • Zhang, Wei-Jie;Jiang, Ping-Ping;Zhang, Ping-Bo;Zheng, Jia-Wei;Li, Haiyang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4015-4022
    • /
    • 2012
  • Manganese(III) 5-(4-carboxyphenyl)-10,15,20-triphenyl porphyrin chloride (Mn(TCPP)Cl) was grafted through amide bond on silica zeolite Y (HY), zeolite beta ($H{\beta}$) and hexagonal mesoporous silica (HMS). XRD, ICP-AES, $N_2$ physisorption, SEM, TEM, FTIR and thermal analysis were employed to analyse these novel heterogeneous materials. These silica supported catalysts were shown to be used for epoxidation and good shape selectivity was observed. The effect of support structure on catalytic performance was also discussed. The catalytic activity remained when the catalysts were recycled five times. The energy changes about epoxidation of alkenes by $NaIO_4$ and $H_2O_2$ were also computationally calculated to explain the different catalytic efficiency.

Highly Selective Triiodide Polymeric Membrane Electrode Based on Tetra(p-chlorophenyl)porphyrinato Manganese (Ⅲ) Acetate

  • Farhadi, Khalil;Shaikhlouei, Hossain;Maleki, Ramin;Sharghi, Hashem;Shamsipur, Mojtaba
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1635-1639
    • /
    • 2002
  • A new solvent polymeric membrane sensor based on tetra(p-chlorophenyl)porphyrinato manganese (III) acetate is described which demonstrates excellent selectivity toward the triiodide ion. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ M and 7.0 ${\times}$$10^{-6}$M with a Nernstian slope of $-59.6{\pm}1$ mV per decade and a detection limit of 5.0 ${\times}$$10^{-6}$M. The proposed sensor revealed good selectivities for triiodide over a wide variety of other anions and could be used in a pH range 2-9. The electrode can be used for at least two months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of the triiodide and As(III) ions.

Studies on the Catalytic Effects of Organic Compounds by Polymer-bonded Metalloporphyrins (고분자 결합 Metalloporphyrin을 이용한 유기물질의 산화촉매에 대한 연구)

  • Lee Sung-Ju;Paeng Ki-Jung;Whang Kyu-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.744-752
    • /
    • 1992
  • Polymer bonded metalloporphyrins are synthesized by reaction between Fe(III) protoporphyrin or Mn(II) tetrakis(4-N-carboxyphenyl)porphyrin with polystyrene divinylbenzene copolymer. The spectroscopic properties of synthetic polymer bonded metalloporphyrins are investigated by using resonance Raman spectrometer. By synthetic polymer bonded metalloporphyrins as catalyst, which are model of cytochrome P-450 and peroxidases, epoxidation of olefins and oxidation of alkanes are achieved with H2O2 as oxidant. The catalytic efficiencies with polymer bonded metalloporphyrins are improved on that with corresponding nonpolymer bonded metalloporphyrins. Especially those can be reused because of stability against oxidant. Electron donating imidazole derivatives, which are attached in 5th position of central metal of metalloporphyrins, enhance the catalytic efficiencies.

  • PDF