• 제목/요약/키워드: Mixture formation

검색결과 1,056건 처리시간 0.03초

직사각형 밀폐공간내에 기체연료 밑면 누출시 가연성 혼합기 생성에 관한 연구 (A Study on Flammable Mixture Formation in a Rectangular Enclosure with Gaseous Fuel Leak from the Bottom)

  • 정낙규;김호영
    • 설비공학논문집
    • /
    • 제5권4호
    • /
    • pp.249-256
    • /
    • 1993
  • Numerical method is applied to predict the time variation behavior of flammable mixture formation in a two dimensional enclosure from the beginning of gas leak. Additionally experimental method is used to consider qualitative aspects. Characteristics of flammable mixture formation such as distribution of flow and fuel mass fraction at various locations in the enclosure are determined for the following parameters: the various locations of leak at the bottom and aspect ratio of the enclosure. In the case of gas leak with small leak velocity from the bottom of enclosure gravitational force affects the formation of flammable mixture. Aspect ratio of the enclosure also affects the formation of flammable mixture. The volume of the region of recirculating flow is dominant factor affecting the formation mixture.

  • PDF

증발디젤분무의 혼합기 형성과정에 대한 열역학적 접근 (Thermodynamic Approach to the Mixture Formation Process of Evaporative Diesel Spray)

  • 염정국
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.201-206
    • /
    • 2009
  • The focus of this work is placed on the analysis of the mixture formation process under the evaporative diesel-free spray conditions. In order to examine homogeneity of mixture within the vapor phase region of the injected spray, image analysis was carried out based on the entropy of statistical thermodynamics. As an experimental parameter, the injection pressure and ambient gas density were selected, and effects of the injection pressure and density variation of ambient gas on the mixture formation process in the evaporative diesel spray were investigated. In the case of application of the thermodynamic entropy analysis to evaporative diesel spray, the value of the dimensionless entropy always increases with increase in time from injection start. Consequently, the dimensionless entropy in the case of the higher injection pressure is higher than that of lower injection pressure during initial injection period.

정적연소기내에서의 분위기 온도 및 압력에 따른 혼합기 분포에 관한 성층화 정도 특성 (Stratified Degree Characteristics on Fuel Mixture According to Ambient Temperature and Pressure in a Constant Volume Combustion Chamber)

  • 이기형;이창식;이창희
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.180-188
    • /
    • 2005
  • It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption technology, it produces much unburned hydrocarbon and soot because of heterogeneous equivalence ratio in the combustion chamber. Therefore, the stratified mixture formation technology is very important to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The local effect of mixture formation according to control air-fuel distribution in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, we found that the flame propagation speed increase with swirl flow and the swirl promotes the formation of fuel and air mixture.

화상상관법을 이용한 증발 디젤분무의 구조해석 (Analysis on the Structure of Evaporative Diesel Spray by Using PIV Technique)

  • 염정국;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.74-79
    • /
    • 2004
  • The effects of change in injection pressure on spray structure have been investigated in high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Also emissions of diesel engines can be controlled by the analyzed results. Therefore, this study examines the evaporating spray structure by using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72 MPa to 112 MPa with a high pressure injection system(ECD-U2). The PIV(Particle Image Velocimetry) technique was used to capture flow variation of the evaporative diesel spray. A study on the mixture formation process of diesel spray was executed by the results of flow analysis in this study. Consequentially the large-scale vortex flow could be found in downstream spray and the formed vortex governs the mixture formation process in diesel spray.

혼합기 형성-유입과정을 고려한 천연가스엔진 모델링 연구 (A Study of on a Natural Gas Engine Modeling for Mixture formation and Intake Process)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.13-20
    • /
    • 2009
  • Development of a dynamic engine model is essential to predict and analyze of dynamic characteristics from a natural gas engine. Reducing the harmful exhaust emissions can be accomplished by a precise air-fuel ratio control. In this paper, the dynamic engine model was proposed and included mixture formation and intake process because the dynamic characteristics can be affected by the mixture components such as an air and a gaseous fuel. The air mass flow, the partial pressure ratio, and the gas constant are changed by variations of the components in the mixture formation and intake process. The dynamic engine model is applied to the natural gas engine for validation test. Experimental results show that the dynamic engine model is effective to predict the dynamic characteristics of the natural gas engine.

  • PDF

가솔린 직분사식 불꽃점화기관에서 연료 분사 방향이 혼합기 형성에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effect of Injection Direction on Mixture Formation Characteristics in DISI Gasoline Engine)

  • 김태훈;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.101-102
    • /
    • 2014
  • Rising oil price and environmental problems are causing automotive industry to increase fuel efficiency. Improved fuel efficiency in gasoline engine was made possible by development of DISI gasoline engine. Since fuel is injected inside cylinder directly, in-cylinder temperature can be reduced than multi-port injection engine and this leads to increased compression ratio. However, engine performance is largely dependent on mixture formation process due to in-cylinder fuel injection. Especially for spray guided and air guided DISI gasoline engine, injection direction is important factor to mixture preparation. It is because interaction between intake flow and spray affect fuel-air mixture. Hence, in this study, mixture formation characteristics were analyzed by varying injection direction using KIVA 3V release2 code. Residual gas was considered for assuming combustion. Therefore, initial condition for in-cylinder temperature was set equal to the end state of exhaust stroke of combustion cycle. Since angle between intake air flow direction and spray direction affects fluid flow and evaporation field, mixture distribution was affected by fuel injection direction dominantly.

  • PDF

Mie 산란 방법과 엔트로피 해석 방법을 이용한 혼합연료비에 따른 분무 균질도 특성에 관한 연구 (A Study on the Macro-Scopic Spray Characteristic of Homogeneous Degree for the GDI Injector According to Mixture(Gasoline-Diesel) Ratio Using Mie-Scattering Method and the Entropy Analysis)

  • 이창희;이기형;이창식;배재일
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2003
  • In this study, his technique was applied to a GDI spray in order to investigate the mixture distribution. In addition, the homogeneity degree and diffusion effect according to ambient temperature in the high pressure chamber were analyzed by using an entropy analysis method. From this experiment, we could find that entropy analysis is very effective method for the analysis of mixture formation, and the entropy values increase with the progress of uniformity in diffusion Process. we tried to provide the fundamental data for parameter which effects on the spray macroscopic characteristics with mixture ratio of diesel and gasoline. In addition, the mixture formation was analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. From the entropy analysis results we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions. As to increasing ambient temperature and increasing gasoline rate, the entropy intensity using the statistic thermodynamics method is increased because evaporation rate is higher gasoline than diesel.

예혼합 압축착화 엔진의 혼합기 형성 및 연소 특성에 관한 연구 (A Study on the Characteristics of Mixture Formation and Combustion in the Premixed Charge Compression Ignition Engine)

  • 김형민;류재덕;이기형
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.1-9
    • /
    • 2006
  • Recently, there has been an interest in premixed diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to conventional diesel engines. Because this concept reduced NOx and smoke emissions simultaneously. Early studies are shown that in a HCCI(Homogeneous Charge Compression Ignition) engine, the fuel injection timing and intake air temperature affect the mixture formation. The purpose of this study is to investigate characteristics of combustion and mixture formation according to injection timing and intake air temperature in a common rail direct injection type HCCI engine using an early injection method called the PCCI(Premixed Charge Compression Ignition). From this study, we found that the fuel injection timing and intake air temperature affect the mixture formation and in turn affects combustion in the PCCI engine.

동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향 (Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames)

  • 이원남
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

제강 슬래그 골재를 이용한 PSMA 혼합물의 녹물 발생 영향 및 흡음 특성 평가 (Evaluation of the Effect of Rust Formation and the Characteristics of Sound Absorption of PSMA Concrete Mixture Using Steel Slag Aggregate)

  • 김혁중;장동복;김한나
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.594-601
    • /
    • 2021
  • 본 연구에서는 철강산업의 부산물인 제강슬래그의 도로포장용 건설재료로 사용 확대를 위한 골재의 품질 특성을 연구하는 것으로 골재의 녹물 발생 가능성을 확인하고, 아스팔트 콘크리트 혼합물의 내구성능과 흡음률 평가를 통한 소음 저감 특성을 평가하였다. 골재의 녹물 발생 실험을 수행한 결과, 두 골재에서 녹물이 관찰되지 않아 실제 도로의 수환경에서 녹물 발생 가능성이 매우 낮을 것으로 판단된다. 수분저항성 실험을 수행한 결과, 모든 혼합물에서 85%를 상회하는 인장강도 비를 보였으며 아스팔트 혼합물 기준을 만족하였다. 또한, 제강슬래그를 활용한 아스팔트 포장도로의 구조적 안정성이 일반 포장도로 대비 우수한 것으로 조사되었다. 제강슬래그 혼합물의 흡음 계수는 일반 골재 혼합물보다 높게 측정되었다. 이에, 도로 소음 저감에 제강슬래그 혼합물이 일반 혼합물보다 효과적으로 대응할 수 있을 것으로 판단된다.