• 제목/요약/키워드: Mixture Theory

검색결과 306건 처리시간 0.024초

LCD 패널 상의 불량 검출을 위한 스펙트럴 그래프 이론에 기반한 특성 추출 방법 (Feature extraction method using graph Laplacian for LCD panel defect classification)

  • 김규동;유석인
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.522-524
    • /
    • 2012
  • For exact classification of the defect, good feature selection and classifier is necessary. In this paper, various features such as brightness features, shape features and statistical features are stated and Bayes classifier using Gaussian mixture model is used as classifier. Also feature extraction method based on spectral graph theory is presented. Experimental result shows that feature extraction method using graph Laplacian result in better performance than the result using PCA.

패킹모델 이용한 초고성능 콘크리트 배합설계 및 성능 평가 (Mix design and Performance Rvaluation of Ultra-high Performance Concrete based on Packing Model)

  • 옌스뤠이;장종민;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.94-95
    • /
    • 2020
  • This paper introduces the mix design and performance evaluation of Ultra-High Performance Concrete (UHPC). The concrete mixture is designed to achieve a densely compacted cementitious matrix via the modified Andreasen & Andersen particle packing model. The compressive strengths of UHPC designed by this method reached 154MPa. The relationship between packing theory and compressive strength of UHPC is discussed in this paper.

  • PDF

케로신-공기 혼합물의 데토네이션 하중에 의한 열탄소성 관의 동적 거동 해석 (Numerical Investigation of Dynamic Responses of a Thermal Elasto-plastic Tube under Kerosene-air Mixture Detonation)

  • 곽민철;이영헌;여재익
    • 한국추진공학회지
    • /
    • 제20권5호
    • /
    • pp.60-69
    • /
    • 2016
  • 본 연구에서는 케로신-공기 혼합물 데토네이션 계산과 다물질 해석을 기반으로 데토네이션 하중에 의한 얇은 금속관의 열탄소성 거동에 대한 수치계산을 수행하였다. 데토네이션 하중은 케로신-공기 혼합물의 데토네이션을 활용하여 모델링하였으며, 검증을 위해 해석 결과를 C-J 조건과 실험적 셀 직경을 통해 비교 검증하였다. 또한 금속의 탄성/소성 거동을 확인하기 위하여, 소성 거동은 구리의 Taylor impact 문제로, 탄성 거동은 베를리움 평판 떨림 문제를 활용하였다. 온도에 의한 관의 탄소성 거동 변화를 확인하기 위하여 동일한 데토네이션 하중 하에서 초기 온도가 다른 관의 거동을 확인하고 이론식과의 비교를 통해 열연화 효과가 고려되어야 함을 확인하였다.

클라우지우스 엔트로피와 적응적 가우시안 혼합 모델을 이용한 움직임 객체 검출 (Moving Object Detection using Clausius Entropy and Adaptive Gaussian Mixture Model)

  • 박종현;이귀상;또안;조완현;박순영
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.22-29
    • /
    • 2010
  • 비디오 시퀀스에서 움직임 있는 객체의 실시간 검출 및 추적은 스마트 감시 시스템에서 매우 중요한 요소로 분류되고 있다. 본 논문에서 우리는 움직임이 있는 객체의 검출을 위해 클라우지우스 엔트로피와 적응적 가우시안 혼합모델을 사용한 객체 검출 방법을 제안한다. 먼저, 엔트로피의 증가는 일반적으로 불안전한 조건에서 많은 엔트로피의 변화가 발생한 경우 복잡성 및 객체의 움직임이 증가함을 의미한다. 만약 순간적으로 엔트로피 변화가 큰 화소는 움직임 객체에 속한다고 고려하여 움직임 분할 특성을 적용한다. 따라서 우리는 먼저 클라우지우스 엔트로피 이론을 적용하여 엔트로피에 대한 에너지 변화량을 dense 맵으로 변환한다. 두 번째로 우리는 움직임 객체를 검출하기 위해 적응적 가우시안 혼합 모델을 적용하였다. 실험 결과에서 제안된 방법이 효율적으로 움직임이 있는 객체를 검출할 수 있었다.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

세계 여성 정치 지도자 의복행동 연구 -홉스테드 문화이론을 중심으로- (A Study on Clothing Behavior of World Female Political Leaders -Based on Hofstede's Cultural Dimensions Theory-)

  • 채금석;김주희
    • 한국의류학회지
    • /
    • 제41권3호
    • /
    • pp.433-445
    • /
    • 2017
  • This study uses a macro-viewpoint to investigate how female world leaders' clothing behaviors are different by nation and culture. This study conducted a comparative study on clothing behavior by cultural block in order to understand similarities and differences based on Hofstede's cultural dimensions theory. The findings are as follows. First, the clothing styles of female world leaders are categorized into classical suit style, national traditional style, and eclectic style. Second, classic suit style is more often found in countries characterized by high individualism, low power distance index, and low avoidance index. The style represents individual activity and rationality as well as trust towards women acting in men's roles. Third, a national traditional style is found in countries featuring high collectivism, high power distance index, and high uncertainty avoidance index. These countries share a culture that emphasizes harmony with the whole, rather than any one given part; consequently, clothing style represents a national identity (or the roles as a national member) rather than that of the individual level. Fourth, an eclectic clothing style is expressed in a mixture of classical suits and a national traditional style that depends on how much Eastern and Western cultures are reasonably compromised or Eastern tradition and Western culture coexist.

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

이성분 액체 혼합물 ($C_6H_6-CCl_4$)의 통계열역학적 연구 (Transient State Theory of Significant Liquid Structure Applied to A Binary Mixture of Benzene and Carbon Tetrachloride)

  • 최동식;안운선;김각중;장세헌
    • 대한화학회지
    • /
    • 제11권4호
    • /
    • pp.143-149
    • /
    • 1967
  • 액체 구조에 관한 천이상태 이론을 벤젠과 사염화탄소의 이성분 액체 혼합물에 적용시켰다. 각 성분의 상태합으로부터 액체 혼합물계의 상태합을 구하고, 이것으로부터 전체압, 부분압, 몰부파, 혼합엔트로피 및 압축율 등의 열역학적 성질을 여러 온도에서 계산하였다. 계산 결과는 문헌에서 얻은 실험값과 근사적으로 일치함을 발견하였다.

  • PDF

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.