• 제목/요약/키워드: Mixture Experiments

검색결과 959건 처리시간 0.036초

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

쾌속 금형 제작을 위한 텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결 (Selective Laser Sintering of WC-Co Mixture for Rapid Tooling)

  • 김광희;조셉비만
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.187-194
    • /
    • 2002
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture for rapid tooling. The experiments were carried out within an air, argon and nitrogen atmosphere. Coupons of single layer were sintered at various laser powers, scanning speeds and scan spacings. As the energy density (energy per unit scanned area) is increased, the thickness of coupons is increased. The main problem took place during sintering within an air atmosphere was severe oxidation of WC-Co mixture. As the laser power is increased and/or scanning speed is decreased, more severe oxidation occurred. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. Experiments on multi-layer sintering were also carried out.

  • PDF

Text-Independent Speaker Verification Using Variational Gaussian Mixture Model

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.914-923
    • /
    • 2011
  • This paper concerns robust and reliable speaker model training for text-independent speaker verification. The baseline speaker modeling approach is the Gaussian mixture model (GMM). In text-independent speaker verification, the amount of speech data may be different for speakers. However, we still wish the modeling approach to perform equally well for all speakers. Besides, the modeling technique must be least vulnerable against unseen data. A traditional approach for GMM training is expectation maximization (EM) method, which is known for its overfitting problem and its weakness in handling insufficient training data. To tackle these problems, variational approximation is proposed. Variational approaches are known to be robust against overtraining and data insufficiency. We evaluated the proposed approach on two different databases, namely KING and TFarsdat. The experiments show that the proposed approach improves the performance on TFarsdat and KING databases by 0.56% and 4.81%, respectively. Also, the experiments show that the variationally optimized GMM is more robust against noise and the verification error rate in noisy environments for TFarsdat dataset decreases by 1.52%.

Numerical simulation of cavitating flow past axisymmetric body

  • Kim, Dong-Hyun;Park, Warn-Gyu;Jung, Chul-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.256-266
    • /
    • 2012
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, torpedoes, etc. The present work has developed the base code to solve the cavitating flows past the axisymmetric bodies with several forebody shapes. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with hemispherical, 1-caliber, and 0-caliber forebody and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. It has been concluded that the present numerical code has successfully accounted for the cavitating flows past axisymmetric bodies. The present code has also shown the capability to simulate ventilated cavitation.

Transient Multicomponent Mixture Analysis Based On an ICE Numerical Technique for the Simulation of an Air Inggess Accident in an HTGR

  • Lim, Hong-Sik;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.375-387
    • /
    • 2004
  • This paper presents a transient multicomponent mixture analysis tool developed to analyze the molecular diffusion, natural convection, and chemical reactions related to air ingress phenomena that occur during a primary-pipe rupture of a high temperature gas-cooled reactor (HIGR). The present analysis tool solves the one-dimensional basic equations for continuity, momentum, energy of the gas mixture, and the mass of each gas species. In order to obtain numerically stable and fast computations, the implicit continuous Eulerian scheme is adopted to solve the governing equations in a strongly coupled manner. Two types of benchmark calculations were performed with the data of prerious Japanese inverse U-tube experiments. The analysis program, based on the ICE technique, runs about 36 times faster than the FLUENT6 for the simulation of the two experiments. The calculation results are within a 10% deviation from the experimental data regarding the concentrations of the gas species and the onset times of natural convection.

반응표면분석에 의한 혼합물의 다특성 허용차배분 (A mixture tolerancing with multi-characteristics by response surface method)

  • 김성준;임정규;박종인
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2009년도 추계학술대회
    • /
    • pp.15-22
    • /
    • 2009
  • Quality variations in mixture products such as medicine, food, engineering chemicals, and alloy materials can be caused by their own sub-components. For instance, discharging characteristics of a lithium-ion rechargeable battery depend upon the mixture ratio of ethylene, dimethyle, and ethyle-methyle, all of which consists an electrolyte solution in the battery. Thus it is important to determine tolerances of mixture components in maintaining the product quality at a desired level. This paper proposes a simple but efficient approach to a mixture tolerancing method with multi-response variables. We use a response surface method for empirical modelling between mixture components. An illustrative example of the proposed method is given.

  • PDF

혼합물실험계획법을 이용한 2차전지의 최적설계 (An Optimum Design of Secondary Battery Using Design of Experiments with Mixture)

  • 김성준;박종인
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.983-989
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

  • PDF

혼합물 실험계획법을 이용한 OH라디칼 최적 생성을 위한 삼성분 전극의 비율 선정 (Using Design of Mixture Experiments to Select the Ratio of a Three-Component Electrode for Optimal Generation of Hydroxyl Radicals)

  • 박영식
    • 한국환경과학회지
    • /
    • 제29권8호
    • /
    • pp.793-800
    • /
    • 2020
  • The conventional development of multi-component electrodes is based on the researcher's experience and is based on trial and error. Therefore, there is a need for a scientific method to reduce the time and economic losses thereof and systematize the mixing of electrode components. In this study, we use design of mixture experiments (DOME)- in particular a simplex lattice design with Design Expert program- to attempt to find an optimum mixing ratio for a three-component electrode for the high RNO degradation; RNO is an indictor of OH radical formation. The experiment included 12 experimental points with 2 center replicates for 3 different independent variables (with the molar ratio of Ru, Ti, Ir). As the Prob > F value of the 'Quadratic' model is 0.0026, the secondary model was found to be suitable. Applying the molar ratio of the electrode components to the corrected response model results is an RNO removal efficiency (%) = 59.89 × [Ru] + 9.78 × [Ti] + 67.03 × [Ir] + 66.38 × [Ru] × [Ir] + 132.86 × [Ti] × [Ir]. The R2 value of the equation is 0.9374 after the error term is excluded. The optimized formulation of the ternary electrode for an high RNO degradation was acquired when the molar ratio of Ru 0.100, Ti 0.200, Ir 0.700 (desirability d value, 1).

초폭굉속도 램 가속기의 정상발진 및 불발과정의 수치적 연구 (Numerical Study of Regular Start and Unstart Process of Superdetonative Speed Ram Accelerator)

  • 문귀원;정인석;최정열
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.31-41
    • /
    • 2000
  • A numerical study was conducted to investigate the combustion phenomena of regular start and unstart processes based on ISL#s RAMAC 30 experiments with different diluent amounts in a ram accelerator. The initial projectile launching speed was 1800m/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with $5CO_2\;or\;4CO_2$. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1800m/s, as was found in the experiments using a steel-covered projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the regular start and unstart processes found in the experiments with an aluminum-covered projectile. The numerical results matched almost exactly to the experimental results. As a result, it was found that the regular start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF