• 제목/요약/키워드: Mixing solution

검색결과 798건 처리시간 0.033초

Properties of Water-Soluble Propolis Made with Honey

  • Woo, Soon Ok;Han, Sangmi;Hong, Inpyo
    • Journal of Apiculture
    • /
    • 제32권4호
    • /
    • pp.391-394
    • /
    • 2017
  • Propolis is made by bees collecting protective material or essence of plants and mixing with saliva and enzymes produced by the salivary glands. It is used to repair the inside of the honeycomb, keep it sterile, and adjust the temperature and humidity. Propolis is a natural antibiotic substance that it is used to make a clean room by coating the cell before the queen bee lay eggs, and preventing the bacteria from invading by using with wax when sealing the nursery room. Propolis extract is a health functional food with antioxidant and oral antimicrobial effects. In order to use propolis in food, its active ingredients are extracted with ethanol. Water-soluble propolis was prepared by mixing and stirring honey and ethanol extracted propolis (EEP) solution. When 1kg of honey and 100ml of ethanol extracted propolis solution were mixed and stirred, the total flavonoid content of water-soluble propolis was $6.6{\pm}1.1mg/10g$, and the free radical scavenging effects of water-soluble propolis were 54 to 74%.

Diffusion of a Steady Horizontal Line Source in a Turbulent Shear Flow (난류전단(亂流剪斷) 흐름에서의 정상(定常) 수평(水平) 선오염원(線汚染源)의 확산(擴散))

  • Jun, Kyung Soo;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제13권2호
    • /
    • pp.191-199
    • /
    • 1993
  • Diffusion of a steady horizontal line source in a turbulent shear flow is simulated by numerically solving a steady two-dimensional advective diffusion equation. The computational result is compared with the analytic solution for uniform velocity and diffusivity distributions over the depth. The analytic solution for constant velocity and diffusivity overestimates the degree of vertical mixing. The normalized equation indicates that friction factor is the only physical parameter that governs the vertical diffusion process. Sensitivities of the diffusion process to the friction factor and initial source position are analyzed. The rate of vertical mixing varies approximately as the square root of the friction factor. The optimal source position, which gives the most rapid mixing, lies above the mid-depth and moves toward the water surface as the friction factor increases.

  • PDF

Tracer Tests on Transverse Mixing in Meandering Streams (사행하천에서 횡혼합에 관한 추적자 실험)

  • Seo, Il-Won;Baek, Kyung-Oh;Jeon, Tae-Myoung;Jin, Joo-Ha
    • Journal of Korea Water Resources Association
    • /
    • 제36권4호
    • /
    • pp.673-689
    • /
    • 2003
  • Field tests were conducted to investigate characteristics of the transverse mixing and to evaluate the dispersion coefficients in the meandering natural streams. The Sum River and the Cheong-mi Creek, tributaries of Han River, were selected as the test site, and measurements of the hydraulic and dispersion data were performed. In the tracer tests, the radioisotope was used as a tracer and injected into a flow on the instantaneous point source. Using the measured data, the longitudinal and transverse dispersion coefficients were evaluated and compared with the previous studies. The longitudinal dispersion coefficients, which were evaluated by application of the analytical solution, were about 0.5 $m^2$/s at the Sum River and 0.2 $m^2$/s at the Cheong -mi Creek. The transverse dispersion coefficients, which were evaluated by the analytical solution and the moment method, were ranging from 0.01 to 0.06 $m^2$/s for the Sum River and from 0.01 to 0.05 $m^2$/s for the Cheong-mi Creek.

Bandgap Control of (AlxGa1-x)2O3 Epilayers by Controlling Aqueous Precursor Mixing Ratio in Mist Chemical Vapor Deposition System (미스트화학기상증착시스템의 전구체 수용액 혼합비 조절을 통한 (AlxGa1-x)2O3 에피박막의 밴드갭 특성 제어 연구)

  • Kim, Kyoung-Ho;Shin, Yun-Ji;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제32권6호
    • /
    • pp.528-533
    • /
    • 2019
  • We investigated the growth of $(Al_xGa_{1-x})_2O_3$ thin films on c-plane sapphire substrates that were grown by mist chemical vapor deposition (mist CVD). The precursor solution was prepared by mixing and dissolving source materials such as gallium acetylacetonate and aluminum acetylacetonate in deionized water. The [Al]/[Ga] mixing ratio (MR) of the precursor solution was adjusted in the range of 0~4.0. The Al contents of $(Al_xGa_{1-x})_2O_3$ thin films were increased from 8 to 13% with the increase of the MR of Al. As a result, the optical bandgap of the grown thin films changed from 5.18 to 5.38 eV. Therefore, it was determined that the optical bandgap of grown $(Al_xGa_{1-x})_2O_3$ thin films could be effectively engineered by controlling Al content.

A Study on the Characteristics of Alkali Silica Sol Grouting Material (알칼리성 실리카졸 지반주입재의 특성에 관한 연구)

  • Cho, Younghun;Kim, Chanki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • 제12권4호
    • /
    • pp.17-24
    • /
    • 2011
  • For the purpose of cut off and ground stabilization, water glass chemical grouting method using sodium silicate has problems of weakening durability and ground water pollution because leaching was conducted when the homogel is exposed to the ground water as time elapses. The purpose of this study is to identify the effect of alkali silica sol ground injection materials, it was compared with the sodium silicate ground injection materials using water glasses. For sodium silicate and alkali silica sol by mixing each case is divided into four different specimens were made and tested. The characteristic of alkali silica sol ground injection material was analyzed by unconfined compression test and environmental impact statement of ordinary portland cement and blast furnace slag cement. Alkali silica sol specimens were made mixing A-solution and B-solution in the proportion of one on one. Through this study, alkali silica sol ground injection mixing blast furnace slag cement has excellent strength and environment-friendly.

Effects of the Mixing Ratio of the Different Substrates and the Concentration of Fertigation in Nutrient Solution on the Growth of Tomato Plug Seedlings (배지의 혼합비율과 관비 양액 농도가 토마토 플러그묘의 생장에 미치는 영향)

  • Kim, Hong-Gi;Cho, Ja-Yong;Yu, Sung-Oh;Yang, Seung-Yul;Kang, Jong-Gu;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • 제16권2호
    • /
    • pp.108-114
    • /
    • 2007
  • This study was conducted to clarify the effects of the different mixing ratios of substrate mixtures based on peat moss and the concentration of nutrient solution on the growth of tomato (Lycopersicon esculentum Mill.) seedlings. Substrates such as peat moss, rice hull, carbonized rice hull, decomposed sawdust, perlite and granular rock wool were mixed and used. The concentration of nutrient solution were adjusted to EC $0.5{\sim}1.5mS/cm$. The volumetric moisture contents became higher as peat moss mixed were much more. Total porosities in all substrate mixtures were over 80%, and pH in substrate mixtures became lower as the volume of peat moss mixed higher. Mixing ratios of substrates suitable for the production of tomato seedlings with the higher quality were peat moss:rice hull:carbonized rice hull:decomposed sawdust:perlite=25:10:25:20:20(v/v). The plant growth was not significant among the different substrate mixtures. However, plant growth such as plant height, leaf area, and total dry weight became significantly increased as EC increasing.

Effect on the Physical Properties of Bio-Plastic Sheet Adding Corn Husk Which was Byproduct of Food Assets (식량자산 부산물인 옥수수 피 첨가가 바이오 플라스틱 시트의 물성에 미치는 영향)

  • Ahn, Kihyeon;Choi, Jae-Suk;Han, Jung-Gu;Park, UoonSeon;Lee, Roun;Park, Hyung Woo;Chung, SungTaek
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • 제28권2호
    • /
    • pp.97-104
    • /
    • 2022
  • This study investigated the characteristics for the optimal concentration of addition of the mixing solution through the corn husk pulverization and surface modification of biomass byproducts adding mixed solution between ESO and silane. And surveyed the specific surface area, water absorption, particle size and physical properties of bio- degradable plastic sheet. The specific surface area was 1.105 m2/g, particle size was the highest at 19 ㎛. The impact strength, tensile strength, elongation and hardness of plastic sheet showed the highest at the 1% concentration among the mixing solutions. The flexural strength and modulus was high according to the increasing the mixing solution. The results above showed that it was the best the adding 1% of mixed solution after silane treatment of corn husks for its manufacture as a bio-based plastic sheet.

Effect of Particle Size and Mixing Ratio on Quality of Fluidized Coated Vitamin C (입자크기와 혼합비에 따른 유동층 코팅 비타민 C의 품질 특성)

  • Park, Su-Jung;Hwang, Sung-Hee;Chung, Hun-Sik;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • 제14권4호
    • /
    • pp.364-368
    • /
    • 2007
  • The purpose of this study was to improve the stability and the processing property of vitamin C. Vitamin C was coated according to particle size(80-100 mesh, 100-140 mesh) and mixing ratio(1:1.6, 1:2.5, 1:3(w/w)) with coating solution(8% Zein-DP, 6% HPMC-FCC), and then the quality characteristics of fluidized bed micro coated vitamin C were investigated. The coating efficiency and the thickness of coating film were higher in $80{\sim}100$ mesh particle than in $100{\sim}140$ mesh particles, and coating efficiency was decreased as the coating material was increased. The distribution range of particle was more narrow in mixing ratio of 1:3(w/w) than in the other. DPPH radical scavenging activity was not affected by the particle size and the mixing ratio. There was no difference between the coating materials in terms of the quality characteristics. The optimum coating condition for fluidized bed micro-coating of vitamin C powder was selected as the particle size of $80{\sim}100$ mesh and the mixing ratio with coating solution of 1:3(w/w).

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant (나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구)

  • Go, Gil hyun;Park, Tae shin;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제38권9호
    • /
    • pp.476-481
    • /
    • 2016
  • Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.

Study on Mixing Condition of the Rubber Composite Containing Functionalized S-SBR, Silica and Silane : I. Effect of Mixing Temperature (변성 S-SBR Silica-Silane 고무복합체의 배합조건에 대한 연구 : I. 배합온도의 영향)

  • Jang, Suk-Hee;Kim, Wook-Soo;Kang, Yong-Gu;Han, Min-Hyun;Chang, Sang-Mok
    • Elastomers and Composites
    • /
    • 제48권2호
    • /
    • pp.94-102
    • /
    • 2013
  • Characteristics of rubber mixture were evaluated in order to find the optimum mixing conditions of compounds containing silica and silane at various temperatures. With different mixing temperatures of 105, 120, 130, 140 and $160^{\circ}C$, the viscosity of the compound mixed at $105^{\circ}C$ showed a very high viscosity value. Compounds mixed the temperature range from at $120^{\circ}C$ to $140^{\circ}C$ showed lower viscosity than the compound mixed at $105^{\circ}C$. However, the difference was found to be small in those temperature ranges. On the contrary, at the mixing temperature of $160^{\circ}C$, the viscosity of compound increased again. Through the physical and dynamic observations, it was verified that at the mixing temperature below $120^{\circ}C$ only insufficient silica-silane reaction has been obtained. In addition, with the elevated mixing temperature of $160^{\circ}C$, Cross-linking occurred during mixing by the sulfur contained in coupling agent. In the temperature ranges from $120^{\circ}C$ to $140^{\circ}C$, because of the fast coupling reaction at higher temperature, it was thought to be more advantageous during reaction even though the trend of viscosity and dynamic mechanical property was not clear.