Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.6.528

Bandgap Control of (AlxGa1-x)2O3 Epilayers by Controlling Aqueous Precursor Mixing Ratio in Mist Chemical Vapor Deposition System  

Kim, Kyoung-Ho (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Yun-Ji (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Jeong, Seong-Min (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Bae, Si-Young (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.6, 2019 , pp. 528-533 More about this Journal
Abstract
We investigated the growth of $(Al_xGa_{1-x})_2O_3$ thin films on c-plane sapphire substrates that were grown by mist chemical vapor deposition (mist CVD). The precursor solution was prepared by mixing and dissolving source materials such as gallium acetylacetonate and aluminum acetylacetonate in deionized water. The [Al]/[Ga] mixing ratio (MR) of the precursor solution was adjusted in the range of 0~4.0. The Al contents of $(Al_xGa_{1-x})_2O_3$ thin films were increased from 8 to 13% with the increase of the MR of Al. As a result, the optical bandgap of the grown thin films changed from 5.18 to 5.38 eV. Therefore, it was determined that the optical bandgap of grown $(Al_xGa_{1-x})_2O_3$ thin films could be effectively engineered by controlling Al content.
Keywords
$Ga_2O_3$; $(Al_xGa_{1-x})_2O_3$; Alloy; Ultrawide bandgap; Mist CVD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R.C.N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Adv. Electron. Mater., 4, 1600501 (2017). [DOI: https://doi.org/10.1002/aelm.201600501]
2 Tamura Corporation, Standard Specifications of Gallium Oxide Substrates, https://www.tamura-ss.co.jp/file.jsp?id=13281 (accessed: September 2019).
3 R. Roy, V. G. Hill, and E. F. Osborn, J. Am. Chem. Soc., 74, 719 (1952). [DOI: https://doi.org/10.1021/ja01123a039]   DOI
4 S. Fujita, M. Oda, K. Kaneko, and T. Hitora, Jpn. J. Appl. Phys., 55, 1202A3 (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202A3]   DOI
5 M. Oda, K. Kaneko, S. Fujita, and T. Hitora, Jpn. J. Appl. Phys., 55, 1202B4 (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202B4]   DOI
6 Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, Opt. Mater. Express, 7, 1240 (2017). [DOI: https://doi.org/10.1364/OME.7.001240]   DOI
7 T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, and S. Fujita, Jpn. J. Appl. Phys., 48, 070202 (2009). [DOI: https://doi.org/10.1143/JJAP.48.070202]   DOI
8 Y. Oshima, E. G. Villora, and K. Shimamura, Appl. Phys. Express, 8, 055501 (2015). [DOI: https://doi.org/10.7567/APEX.8.055501]   DOI
9 K. Kaneko, T. Nomura, and S. Fujita, Physica Status Solidi C, 7, 2467 (2010). [DOI: https://doi.org/10.1002/pssc.200983896]   DOI
10 F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, Inorg. Chem., 55, 12079 (2015). [DOI: https://doi.org/10.1021/acs.inorgchem.6b02244]   DOI
11 K. Kaneko, K. Suzuki, Y. Ito, and S. Fujita, J. Cryst. Growth, 436, 150 (2016). [DOI: https://doi.org/10.1016/j.jcrysgro.2015.12.013]   DOI
12 M. T. Ha, K. H. Kim, Y. J. Kwon, C. J. Kim, S. M. Jeong, and S. Y. Bae, ECS J. Solid State Sci. Technol., 8, Q3206 (2019). [DOI: https://doi.org/10.1149/2.0381907jss]   DOI
13 H. Yan and P. Wang, Adv. Mater. Res., 1015, 598 (2014). [DOI: https://doi.org/10.4028/www.scientific.net/AMR.1015.598]   DOI
14 S. Lany, APL Mater., 6, 046103 (2018). [DOI: https://doi.org/10.1063/1.5019938]   DOI