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Diffusion of a Steady Horizontal Line Source in
a Turbulent Shear Flow
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Abstract

Diffusion of a steady horizontal line source in a turbulent shear flow is simulated by numerically
solving a steady two-dimensional advective diffusion equation. The computational result is compared
with the analytic solution for uniform velocity and diffusivity distributions over the depth. The
analytic solution for constant velocity and diffusivity overestimates the degree of vertical mixing.
The normalized equation indicates that friction factor is the only physical parameter that governs
the vertical diffusion process. Sensitivities of the diffusion process to the friction factor and initial
source position are analyzed. The rate of vertical mixing varies approximately as the square root
of the friction factor. The optimal source position, which gives the most rapid mixing, lies above
the mid-depth and moves toward the water surface as the friction factor increases.
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1. INTRODUCTION

time before the succeeding stages, i.e., lateral dif-
fusion (in case of point source) and longitudinal

Vertical mixing is the initial stage of mixing
in rivers. So, the rapid vertical mixing contributes

to the whole mixing process by shortening the
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dispersion. In addition, vertical mixing itself is
important for the atmospheric diffusion process,
where the boundary layer thickness is of the or-
der of hundred meters.

For a laterally uniform steady flow and a unifo-
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rmly distributed continuous line source, the verti-
cal diffusion problem can be described by the two-
dimensional steady-state advective diffusion equa-
tion. Mathematical solutions for the problem with
constant velocity and diffusivity have long been
available.” Yeh and Tsai® obtained an analytic
solution for a power-law velocity and power-law
diffusivity, which is unrealistic since the measured
velocity distribution is approximately logarithmic,
and this implies a parabolic diffusivity distribution.
McNulty and Wood® used Aris' method of mome-
nts for the case of logarithmic velocity and para-
bolic diffusivity distributions but the comparison
they made with the solution for constant velocity
and diffusivity is incorrect. Nokes et al“® solved
the problem analytically by reducing it to an eige-
nvalue problem following the approach of Smith®,
who dealt with the problem on where to put the
discharge in meandering rivers. On the other
hand, Coudert® solved the problem numerically
by using a finite difference method but his stated
initial condition is dimensionally incorrect.

In this paper, a two-dimensional steady-state
advective diffusion equation is solved numerically
to simulate the diffusion process for turbulent
shear flow in a channel. The results are compared
with those for the case of constant velocity and
diffusivity. The numerical model is used to inves-
tigate the sensitivity of the vertical diffusion pro-
cess to the friction factor. The effect of the source
position on the downstream concentration distri-
bution is also studied to find the best position
for the most rapid vertical mixing.

2. MATHEMATICAL FORMULATION

2.1 Governing Equation and Initial and Boun-
dary Conditions
The advective diffusion equation for a steady
horizontal line source in a turbulent shear flow
(Fig. 1) can be written as
dc 0 dc
— = —(—)=0 1
“ ox oz € 0z ) W
where c=c(x, z)=mass concentration; u=u(z)
=longitudinal flow velocity; e=g(z)=turbulent
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{a) Geometric Layout

(c) Ditfusivity Distribution

(b) velocity Distribution
Fig. 1. Definition Sketch.

diffusion coefficient; z=vertical coordinate; and
x=longitudinal coordinate. Diffusive transport in
the x direction is not included in Eq. (1) because
it is negligibly small compared with the advective
transport.” Temporal mean flow velocity in the
z direction is assumed to be zero. If a logarithmic
velocity distribution is assumed except for the re-
gion very near the bottom, u can be written as

u(z)=U+ L% 1+ ln(-az—)] for zo<z<d 2)

where k=von Karman constant; d=water depth;
U=mean flow velocity; u.=shear velocity(-——\/r—n
75); To=bottom shear stress; and p=water den-
sity. For a hydraulically smooth channel, z, is the
thickness of the laminar sublayer in which the
velocity distribution is linear and given by

2
Z Ux~

u(z)= for 0<z<z 3)
where v is the kinematic viscosity of water. For
a rough channel, z, can be taken as the distance
to the position where the velocity given by Eq.
(2) is zero, and the velocity is taken as zero for
the region 0<z<z,

The vertical turbulent diffusion coefficient can
be obtained from the Reynolds analogy that the
turbulent mass diffusivity is the same as the mo-
mentum diffusivity, which can be expressed as™:
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In a laminar sublayer for a smooth channel, ¢ is
replaced by the kinematic viscosity of water.

Boundary conditions at the bottom and on the
water surface are given by no-flux conditions
as

2, 0)=0 ®)
0z
2 x =0 ®)
o0z

The initial condition for the source introduced at

x=0 through the area(Az) between z=d,+ Az/2
and z=d,—Az/2, can be expressed as

J— e CSqS
c0, 2)=c WdoAs
d— A% cpcd .t 8% (7a)
2 2
=(} (z=elsewhere) (7b)

where c¢,q is the source strength in mass per unit
volume per unit width.

2.2 Normalization of the Mathematical Mo-
del
To normalize the advective diffusion equation
and the initial and boundary conditions, the follo-
wing dimensionless variables are introduced:

iz
7= ®)

o X
X'= r €)]
u= = (10)

Ux

£
‘= 1
€ ond (11)
o= - (12)

C

where c,, is the equilibrium concentration, i.e., the
concentration far downstream where the source
mass is completely mixed over the depth:
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L _ &G
Co Ud 13)
From Egs. (2) and (4), the normalized equations

for the velocity and diffusivity distributions are

u'=\/—§—+%(l+ln 2) (14)
and
g=xz'(1—2" (15)

for zy’<z'<1. where the friction factor f=8(u./U)’
and z' is zo normalized by the water depth. It
can also be shown that for the laminar sublayer,

w=d (16)
Y%
and
[ — v ~
€ U*d (l’)

for 0<z'<z’. The normalized advective diffusion
equation and the initial, and boundary conditions
in terms of dimensionless variables defined above
are

_oc 0  ,oc

VS e T e © 570 (18)
oc’
(%, 0)=0 (19)
0z
% ', 1=0 (20)
0z
0, 2=c(d) — A2—2<z'<d;+ ATZ) (21a)
=0 (z'=elsewhere) (21h)
where
Ud
P 22
T Az @2)

and ds" and Az’ are, respectively, d, and Az nor-
malized by the water depth.

It is seen from the normalized governing equa-
tion that the friction factor is the only physical
parameter on which the vertical diffusion process
in a turbulent shear flow depends. This means
that for a fixed friction factor, variation of the
mean flow velocity does not affect the vertical co-
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ncentration distribution at any position along the
flow direction, as explained by the following rea-
sons. If the mean flow velocity is doubled for a
constant friction factor, the shear velocity is doub-
led. The turbulent velocity components in shear
flows are proportional to the shear velocity as is
known from a number of previous experimental
works including those done by Laufer.®¥ Thus,
the vertical turbulent velocity components of ed-
dies which cause the turbulent diffusion are also
doubled. In this way, the longitudinal advection
and vertical diffusion processes are scaled at the
same rate; consequently, vertical concentration di-
stribution at a given longitudinal position remains
the same.

2.3 Description of the Numerical Method

A Crank-Nicholson scheme, which is uncondi-
tionally stable, was used to solve the turbulent
diffusion equation with previously described initial
and boundary conditions. Writing Eq. (18) in a
finite difference form based on the Crank-Nichol-
son scheme, one obtains:

F'{+Gd ' +Hd =R j=1, -, J-1  (23)

where
F=-— 7\51' ~05 (24)
G=u;+MgrostE-05) (25)
H=—Agj105 (26)
R'=—Fc_,+ 2y~ G)j—Hd« @7
1

= 28

N 28)
AxX'

=0 29

A’ 0 5 (AZI)Z ( )

where Ax’'=dimensionless increment in x-direc-
tion; Az =dimensionless increment in z-direction;
i=index for x-direction; j=index for z-direction.
As a matter of notation, all the variables in the
difference equations are dimensionless ones. The
initial and boundary conditions in the finite diffe-
rence form are

c=cy (30)

c‘;_l'—‘-q‘ (31)

d,
Az
=0 (j=elsewhere)

) (32a)
(32b)

¢'=c (=

Egs. (23), (30) and (31) constitute a system of
J+1 linear equations with three unknowns at each
i. The coefficient matrix associated with this linear
system has a tridiagonal structure, and is solved
by the Thomas algorithm® which requires the
least amount of calculations. The following values
were used throughout the computation: Az'=0.
005, Ax'=0.01.

3. SIMULATION RESULTS AND SENSITI-
VITY ANALYSIS

3.1 Comparison with the Analytic Solution for
Constant Velocity and Diffusivity
The analytic solution to Eq. (1) with the mean
velocity(U) and the depth-averaged turbulent dif-
fusivity(e,) in place of u(z) and &(z), respectively,
and with the initial and boundary conditions, Eq
(5), (6) and (7), can be written as®”

_ ¢:q/U

 JEmenx/U

(z+2nd—df*

oc 2
LS [ 2dTdY

n= o Em:

+exp(— — /U )] (33
where
. U*d
En= 6 (34)

In Eq. (33) it usually suffices to use only a few
terms, for instance, n=0, =1, and =2 In this
study, n=0, £ 1, ---, £20 was used. It can also
be normalized in terms of previously defined di-
mensionless variables and e, as

1 o0 4 n2
o= - S lexp(— (z'+2n+d,) )
VAnER'x'  neew den'x’'
z'+2n—d,'y
+exp(— EF2—dY 35)
den'x

where &, is &, normalized by Ud, which can be
expressed as

e ’=-1—\£ 36)
m 6 8
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The numerical model was tested by comparing
the result computed for constant velocity(U) and
diffusivity(e,) with the analytic solution. The com-
parison showed a good agreement between the
numerical and the analytic solutions. Fig. 2 illust-
rates the comparison of the concentration profiles
at x'=5, where the source position is the mid-de-
pth and £f=0.02 is used. The normalized concent-
ration computed by the numerical model is 1.005
at far downstream positions where the concentra-
tions at all depths are the same to the fourth digit.
This means that the computation by the numerical
model has an error of 0.5% in terms of the conce-
ntration of complete mixing.

Fig. 3 and Fig. 4 shows comparisons between
the numerical model for the case of logarithmic
velocity and parabolic diffusivity and the analytic
solution for the case of constant velocity and dif-
fusivity. Illustrated in Fig. 3 are concentration dis-
tributions at two downstream locations for the
source released at d’=0.01 and the friction factor
f=0.02. The source position was taken as d,'=0.
01 not to place it within the laminar sublayer or
the roughness height. Fig. 4 represents the nor-
malized crossing distance (X.') and mixing dista-
nce(Xy) for friction factors ranging from 0.01 to
0.1. The crossing distance is defined as the longi-
tudinal distance required for the source mass to
spread across the whole depth and the mixing
distance is the distance for the mass to be comp-

J

i ——Analytic  Solution
e Numerical Solution
0.8 <
0.6 <
]
0.4
0.2 4
]
Y T 1 1 1
0.5 0.75 1 1.25 1.5

Fig. 2. Concentration Distribution for Constant Ve-
locity and Diffusivity(x'=5).
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letely mixed. These definitions are essentially the
same as those defined by Holley et al.™? for the
case of transverse mixing. X' and X' in Fig. 4
are taken as the distances where the concentra-
tion at the water surface first becomes larger than
2% and 98%, respectively, of the concentration
at the bottom.

It is seen that the analytic results for constant
velocity and diffusivity overestimate the rate of
vertical mixing. The mixing distance from the
analytic solution is about one half as short as that
from the numerical model. This contradicts the
conclusion of McNulty and Wood® that the pollu-
tant reaches the complete mixing earlier in case
of logarithmic velocity profile than it does under
the assumption of constant velocity. But they used
the wrong value, u.d, for the average diffusivity
instead of the correct value, u.d/6. Also observed

Numerical

{b) ' = 40
Fig. 3. Concentration Distribution at Downstream
Locations.
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Fig. 4. Crossing and Mixing Distances.

in Fig. 4 is that the crossing and mixing distances
become shorter for larger friction factor. This
means that mixing occurs more rapidly for a lar-
ger friction factor.

3.2 Sensitivity to Friction Factor

A series of numerical simulations was carried
out to see the effect of friction factor on the verti-
cal diffusion in turbulent shear flows. Friction fac-
tors of 0.01, 0.02, 0.04, and 0.08 were tried. The
source position was taken as d'=001. Fig. 5
shows concentration distributions at downstream
locations, x'=16 and x’=32 for various friction
factors. The initial concentration is higher for lar-
ger friction factor because given the same mean
velocity, the velocity near the bottom is lower for
a larger friction factor consequently giving the hi-

0.2 )

0.8 =}

0.6 =

0.2 = v

(b) x' =32

Fig. 5. Concentration Distributions for Various Fri-
ction Factors.

gher initial concentration as it is given by Eq.
(7a). However, as the source mass travels downst-
ream, it is mixed more rapidly in case of larger
friction factor. One can observe that the concent-
ration distribution at x'==16 for f{=008 is very
close to that at x'=32 for f=0.02, which means
that the degree of vertical mixing for {=0.08 is
twice as rapid as it is for f=0.02. Similar relation-
ship is observed between f=0.04 and {=0.01. The
vertical turbulent velocity component has the
same order of magnitude as the shear velocity,
which varies as the square root of friction factor
for a given mean flow velocity. Thus, increasing
a friction factor by 4 times would give twice as
large a turbulent velocity, resulting in approxima-
tely twice as rapid a diffusion process as observed
in the above comparison. By comparing concentra-
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tion distributions for various friction factors at two
different downstream locations, it is concluded
that the rate of vertical diffusion varies approxi-
mately as the square root of the friction factor.

3.3 Sensitivity to Source Position

The effect of source position on the vertical dif-
fusion was investigated by computing concentra-
tion distributions at downstream locations for va-
rious source positions. Fig. 6 shows the simulation
results for the following three different initial
source positions: (1) d.’=0.01 (near the bottom);
(2) d/=0.99 (near the water surface); (3) d.’=0.50
(at the mid-depth). For all cases f=0.04 was used.
The high initial concentration for d/’=0.01 in Fig.
6-(a) is due to the low flow velocity near the bot-
tom. As shown in Fig. 6-(b) and Fig. 6-(c), d,/=0.
50 is the best among the three for the rapid mi-
xing , and d,’=0.99 results in the slowest mixing.
The vertical diffusivity, which has a parabolic dis-
tribution, is equally low both near the surface and
near the bottom of the channel, but the longitudi-
nal advection is higher at the surface due to hi-
gher flow velocity. Hence, to achieve the same
degree of mixing, source mass introduced near
the water surface needs more time than that int-
roduced near the bottom. Moreover, the position
of the maximum concentration for d,/=0.50, due
to the slow longitudinal advection as well as the
low vertical diffusion near the bottom, moves to-
ward the channel bottom. The fact that the conce-
ntration is higher in the region closer to the bot-
tom implies that the best source position, which
gives the most rapid complete mixing, exists so-
mewhere between the mid-depth and the water
surface.

3.4 Optimum Source Position

The best source position for rapid mixing was
found for friction factors ranging from 0.01 to 0.09
. Various source positions were tried for each fric-
tion factor and the one which gives the shortest
mixing distance was taken as the optimum source
position. The result is summarized in Table 1 and
the best source position for each friction factor
is plotted in Fig. 7.
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Fig. 6. Concentration Distributions for Various

Source Positions.

One can see that the optimum source position
is located slightly above the mid-depth as expec-
ted. Furthermore, the best source position moves
toward the water surface as the friction factor inc-
reases since the velocity profile becomes steeper
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Table 1. Mixing Distances for Various Friction Factors and Source Positions

o f 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.535 60.3

0.540 59.2 4.1 450 454 44.1 425 40.9 39.3 379
0.545 63.1 41.3 39.2 418 417 40.7 39.5 382 36.9
0.550 68.9 421 35.7 37.2 388 38.6 379 36.9 35.8
0.555 78.9 54.2 334 326 352 36.1 36.0 354 34.6
0.560 87.7 50.2 339 30.0 30.6 331 338 33.7 332
0.565 94.7 57.7 364 28.2 27.6 29.2 31.1 316 316
0.570 100.5 63.4 40.6 296 25.7 25.7 27.7 29.2 292
0.575 105.5 68.7 46.7 321 254 23.7 24.1 26.0 27.3
0.580 109.8 68,0 46.7 32.1 254 23.7 241 26.0 273
0.585 113.7 718 514 36.9 273 226 22.1 22.5 24.3
0.580 117.1 75.2 55.1 41.7 304 24.1 20.7 20.6 21.1
0.595 120.3 78.1 58.2 454 353 26.5 219 193 19.2
0.600 1231 80.7 60.9 485 39.0 309 239 203 180
0.605 20.9

0.65 - solution for constant velocity and diffusivity ove-

1 restimates the degree of vertical mixing. The rate

] of vertical mixing varies approximately as the

0.6 square root of the friction factor, which is reaso-

nable considering that the turbulent velocity com-

4 ponent varies with the square root of friction fac-

R tor. The best source position, which gives the

most rapid mixing moves toward the water sur-

os - ‘ face as the friction factor increases since the velo-

B T ' ¥

0 0.02 0.04 0.06 0.08 0.1
f

Fig. 7. Optimum Source Position for Various Fric-
tion Factors.

for a larger friction factor, which means a larger
difference between the longitudinal advection near
the surface and that near the bottom.

4. CONCLUSIONS

As is seen from a normalization of the advective
diffusion equation, the vertical diffusion process
depends solely on the friction factor. The analytic
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city profile becomes steeper for a larger friction
factor.
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