• Title/Summary/Keyword: Mixing element

Search Result 196, Processing Time 0.026 seconds

Development and Application of Static Mixer (스태틱 믹서 개발 및 응용)

  • Yang, Hei-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.506-513
    • /
    • 2007
  • One of the most widely used static mixers is Sulzer type mixer. However the structure of the element is so complicated that the mixing efficiency is better than others, whereas the pressure drop is larger than the others. Therefore new elements are necessary to reduce the pressure drop and to minimize the decrease of the mixing efficiency compared with the Sulzer ones. The objectives of this study are to develop new static mixer and to perform the experimental investigation in order to evaluate the performance of the new one, and to investigate the applicability of the one in an inline coagulant mixing system for water treatment, The pressure drops of the new static mixer elements were about 4-12% lower than that of the Sulzer SMX one, and the mixing efficiency of the Sulzer SMX one was about 2-5% higher than that of the new ones. The inline coagulant mixing system with a new static mixer element performed significantly better than the traditional mechanical mixing system for turbidity removal.

A Study for the Development of a Static Mixer (스태틱 믹서 개발에 대한 연구)

  • 양희천;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.589-595
    • /
    • 2002
  • Fluid mixing is ubiquitous and essential in many natural and industrial systems. Understanding the mixing processes that occur in these diverse systems is essential for predicting many aspects of practical importance. The objective of this study was to develop a new mixing element and to perform the experimental investigation of flow and mixing in a static mixer that is equipped the new element and the others. Glycerin and gear oil were used as mixing fluids. Pressure drops across the static mixer elements of different designs and different numbers were measured using a hydraulic manometer The axial and cross-sectional views of tracer mixing were photographed using a digital camera. The pressure drops of SSM mixer were about 20% less than that of Sulzer mixer whereas the mixing performance of SSM mixer was not so good as that of Sulzer mixer

Numerical Analysis Study of the Mixing Mechanism of Non-element Mixer (논 엘레멘트 믹서의 혼합 메커니즘에 관한 수치해석적 검토)

  • You, Sun Ho
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Visualization of the mixing pattern in a non-element mixer was carried out using laser induced fluorescence(LIF) to evaluate characteristics of mixer consisting of the main flow pipe and branch flow pipes. The branch flows were injected periodically with the period $T_{in}$ normal to the main flow, and rhodamine B was mixed into the most upstream branch flow to visualize mixing pattern in the main flow pipe by LIF. The length of boundary line L of the LIF image was measured. In this study, a numerical analysis was performed to identify the mixing process of the non-element mixer, and the results were compared with experimental results. Each result was almost the same. When the number of branch flows is increased, the mixing pattern became complicated and was supposed to become chaotic. The length of boundary line L increased exponentially with an increase in the number of branch flows.

Effect of Orifice Diameter Ratio on Unlike Impinging Jet Mixing (액상 충돌 제트의 혼합에 대한 분사공 직경비의 영향)

  • Lee, S.W.;Cho, Y.H.;Yu, B.I.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.220-227
    • /
    • 2006
  • Experimental studies has been conducted to investigate the effect of orifice diameter ratio on the mixing characteristics of the split element of doublet and triplet elements. The spray characteristics of non-reacting immiscible liquids have been investigated using a patternator. The local volume fraction is measured by use of mean value of each component. This volume measurement represents the mixing characteristics of the liquid, which affect the overall combustion efficiency. The ratio of the orifice diameter, ranging from 1 to 1.5, and that of the jet-momentum, ranging from 0.5 to 6.0, we used. The jet impinging behavior with use of various ratios exhibits substantially different mixing characteristics. Mixing efficiency is maximized when the jet-momentum ratio is increased; this behavior is particularly prominent when the orifice diameter ratio is greater than unity. The split of the triplet element yields better mixing characteristics and is more effective than that of the doublet element in regard to achieving high combustion efficiency. The optimum mixing factor for the triplet element is found to be 0.75, according to our measurement.

  • PDF

Mixing Characteristics of Static Mixers (스태틱 믹서의 혼합특성)

  • Yang, Hei-Cheon;Park, Sang-Kyoo;Oh, Seung-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1955-1960
    • /
    • 2003
  • Static mixers have found a large range of applications, including blending, reaction, dispersion, heat transfer and mass transfer. All static mixers have in common a straight pipe or transfer tube into which individual elements are inserted to cut, fold, twist and re-combine the mixing fluid. The operations virtually ensure uniformity in composition, concentration, viscosity and temperature. The objective of this study is to perform the experimental investigations of mixing characteristics for three mixing element types. The resulting mixing patterns were recorded with a digital camera. OPTIMAS was used to analysis the visualized images. The results clearly indicated that the mixing characteristics was highly influenced by the mixer types or mixing mode.

  • PDF

Optimization of Passive Mixer for Enhanced Mixing in a Micro-channel by Using Lattice Bloltzmann Method (격자 볼츠만 방법을 이용한 미소 채널에서의 혼합효율 증가를 위한 수동형 믹서의 최적화)

  • Han Gyu suk;Byun Sung Joon;Yoon Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.707-715
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method is employed to simulate two-phase flow of low Reynolds number in a micro-channel. The mixing characteristics in a micro-channel is a function of Peclet number. The mixing length increases with the Peclet number. It is found that with the inclusion of static elements at the channel, rapid mixing of two liquids can be achieved, as shown by the results of computer simulations. The enhancement in mixing performance is thought to be caused by the generation of eddies and by lateral velocity component when the mixture flows past static elements. The results indicate that the size of static element has more effect on the mixing than the number of static element.

Numerical analysis of internal flow and mixing performance in polymer extruder I: single screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.143-151
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in a single screw extruder system and investigated the mixing performance with respect to the screw speed and the screw pitch. The viscosity of polymer melt was described with Carreau-Yasuda model. The mixing performance was computed numerically by tracking the motions of particles in the screw element system. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the strain. The results revealed that the high screw speed reduces the residence time but increases the deformation rate while the small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance and the small screw pitch increases the distributive mixing performance.

A Study on the Performance Evaluation of Dual Swirl Injectors (Dual Swirl 인젝터의 성능 평가에 관한 연구)

  • 김선진;정해승
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.113-123
    • /
    • 2003
  • Both numerical analysis and experiment of cold and hot tests were performed to obtain basic design data for the swirl coaxial type Injector and to predict the combustion performance. Mass distribution, mixing distribution, mixing efficiency, characteristic velocity efficiency were measured by the cold tests and numerical analysis using the commercial thermo-hydraulic program. Test and analysis variables were recess, pressure drop, velocity ratio, mixing spray, mixture ratio. Hot tests were performed for the Uni-element injector to compare the performance with the cold test results, and, hot tests for Multi-element injector were performed to compare the performance with Uni-element injector. Designed thrust of the Uni-element injector liquid rocket was 35kgf at sea level and combustion chamber pressure, 20bar. Kerosene and Lox were used as a propellant.

Design of Unlike Split Triplet Impinging Element for Jet Mixing (혼합성능 개선을 위한 분리 삼중충돌 요소의 설계)

  • 조용호;김경호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.225-232
    • /
    • 2003
  • With an aim placed on its exploitation on practical injector design, liquid phase mixing due to unlike split triplet impinging element is experimentally investigated by a series of cold tests. Non-reacting kerosene/water spray simulates the kerosene/LOX propellant combination. Measurements of local mixture ratio distribution were made for different injection configurations and different momentum ratios. Mixing and mixing controlled characteristic velocity efficiencies are measured in terms of oxidizer/fuel jet momentum ratio from 0.5 to 8. Extent of mixing and its influence on hot performance are estimated in terms of mixing efficiency and mixing controlled characteristic velocity. Envelope of design locus for optimum mixing quality and corresponding maximum hot performance are proposed. Effects of momentum ratio, orifice diameter ratio and jet velocity ratios are also presented and discussed.

  • PDF

Numerical Analysis on Mixing Efficiency in a Micro-channel with Varied Geometry (미소 채널의 형상변화에 의한 혼합효율에 관한 수치 해석적 연구)

  • Yoon, Joon-Yong;Han, Gyu-suk;Byun, Sung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.275-281
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method was employed to simulate mixing performance of Passive mixer in a micro-channel. It physically analyzed stream line and Pressure drop for passive mixer in a micro-channel. The flow characteristics in a micro-channel was a function of Peclet number. The results indicated that the size of static element was more effect on the mixing than the number of static element and the distance of static elements.