• Title/Summary/Keyword: Mixing System

Search Result 1,780, Processing Time 0.027 seconds

Application of Earth Retaining Structure using Soil Cement-mixing Method (교반혼합체 공법의 도심지 흙막이벽 적용)

  • Kim, Young-Seok;Cho, Yong-Sang;Kamg, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.883-887
    • /
    • 2009
  • In this study, a new soil retaining system was proposed by soil cement mixing method. The new soil retaining system is based on deep cement mixing method by large diameter reinforcing blocks (piles). Large diameter reinforcing blocks (usually $\varnothing$300-500 mm) have the advantage to make reinforcements over a relatively short depth and thus reduce the amount of reinforcement necessary. A field case has been reviewed for actual application of the soil retaining system at a downtown site. Research was conducted to evaluate the behavior of the installed soil retaining wall, with reinforcing blocks (400 mm in diameter and 4 m in length) placed into a 10 m excavation wall at a $20^{\circ}$ angle. As a result, the potential for applying this method to the downtown excavation site was confirmed.

  • PDF

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF

Design of Mixing Head Part of Combustion Chamber for 8tonf Class Staged Combustion Cycle Rocket Engine (8톤급 다단연소 사이클 로켓엔진 연소기 혼합헤드 설계)

  • Kim, Dongki;Ha, Seong up;Moon, Il yoon;Moon, Insang
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2015
  • Staged combustion cycle engines are well known to have high combustion efficiencies and specific impulse. In this study, design of mixing head part of combustion chamber for 8tonf class staged combustion cycle rocket engine (ES-08) was performed. Structural stability of the mixing head part of the combustion chamber is very important design factor because it is loaded by high temperature and high pressure of fuel and oxidizer as well as by thrust load simultaneously. Uniformity of flow distributions of the propellants to the injectors is also important factor. First, a basic configuration for the ES-08 mixing head part was designed on the basis of the structural design requirements. And then, the structural analyses were performed on the basic configuration as well as some of reinforced configurations. As the structural analyses results, the most stable configuration was selected for the ES-08 mixing head part. In order to examine the uniformity of the flow distributions of the propellants through the manifold of the mixing head, flow analysis was performed based on the selected configuration. The results of the flow analysis showed that the fuel and the oxidizer were uniformly supplied to the injector.

The Study on the Effects of Mixer Configurations on Fluid Mixing Characteristics in SCR Systems (SCR 시스템의 믹서 구조 특성에 따른 유동 혼합 특성에 관한 연구)

  • Seo, Jin-Won;Lee, Kyu-Ik;Oh, Jeong-Taek;Choi, Yun-Ho;Lee, Jong-Hwa;Park, Jin-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.192-199
    • /
    • 2008
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. The SCR system is known to be one of the most efficient and stable technologies to remove NOx through the mixing of NOx and urea solution. In the present research, the effects of mixer configurations of SCR system have been investigated to enhance the SCR performance. First, a Schlieren technique is employed to visualize the mixing characteristics of urea solution and exhaust gas. The results show that a mixer is essential to obtain proper fluid mixing. In addition, numerical studies have been made to understand the mixing characteristics through the comparison of the mal-distribution index of concentration at the several locations of the diffuser. In particular, the effects of number of blade and mixer angles on mixing characteristics were studied. The results show that the blade angle has a larger effect on the mixing characteristics than the number of blades.

A Study on Foam Mixing Characteristics in Steady State to Enhance the Performance of Proportioner for Foam System (포 소화설비용 소화약제 혼합장치의 성능향상을 위한 정량 혼합특성에 관한 연구)

  • Ku, Jae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.63-68
    • /
    • 2009
  • This study describes to analyze foam mixing characteristics in steady state to enhance the performance of proportioner for foam system designed to accurately proportion a foam liquid concentrate into a water stream up to constant concentration. The proportioner developed is experimentally evaluated in performance evaluation system consisted of a pump, tanks, pressure gauges, flow meters, a nozzle. As a result, the foam mixing performance of the line proportioner is found to increase with increased the water flow rate due to the venturi effect and with increased the cross-sectional area of the orifice and is analysed with 3 % in the error rate of $\pm4%$. For the pressure proportioner, the foam mixing performance is analyzed to increase with increased the water flow rate and with increased the inlet pressure and is analysed with 3% in the error rate of $\pm2%$.

Enhancement of Turbulent Heat Transfer of the Cooling System in Nuclear Reactor by Large Scale Vortex Generation

  • Chun, Kun-Ho;Park, Jong-Seok;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2001
  • Experimental and computational studies were carried out to investigate the turbulent heat transfer enhancement of the cooling system in nuclear reactor by large scale vortex generation. The large scale vortex motion was generated by rearranging the inclination angels of mixing vanes to the coordinate direction. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity concept based on $\kappa{-}\varepsilon$ model was employed to calculate the turbulent heat and momentum transfers in the subchannel. The turbulences generated by split mixing vanes has small length scales so that they maintain only about $10D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex motions continue longer and remain up to $25D_H$ after the spacer grid.

  • PDF

Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles (원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진)

  • 전건호;박종석;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

A Numerical Study on Mixing Characteristics of the Chemical Injection Tank

  • Chang, Keun-Sun;Park, Byeong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.58-67
    • /
    • 1997
  • A numerical study has been peformed to investigate the flow and mixing characteristics of a chemical injection tank in the chemical and volume control system (CVCS) of Yonggwang 5&6 (YGN 5&6). This study was undertaken to provide a basis for modification of the previous design (YGN 3&4) which gave a lot of difficulties in installation and operation of the chemical injection system during the start-up test because it needs a special reciprocating pump with a high actual head. For the tank of length-to-diameter ratios (L/D) of 1,2 and 3, each with and without a baffle inside, calculation results were obtained by solving the unsteady laminar two-dimensional elliptic forms of governing equations for the mass, momentum and species concentration. Finite-difference method was used to obtain discretized equations, and the SIMPLER solution algorithm, which was developed based on the staggered grid control volume, was employed for the calculation procedure. Results showed that the baffle is very effective in enhancing the mixing in the tank and that a baffle should be installed near the tank entrance in order to 110 chemicals into the reactor coolant system (RCS) within the operating time required.

  • PDF

Influence of Different Mixing Types on the Removal of Natural Organic Matter in Water Treatment (정수처리시 천연유기물질의 제거에 대한 급속혼화유형의 영향)

  • Kim, Hyun-Chul;Yu, Myong-Jin;Lee, Seock-Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.370-377
    • /
    • 2005
  • Dispersion of coagulant should be completed in a fraction of a second before the metal hydroxide precipitate has form. For the reason so-called pump diffusion flash mixing (PDFM) have been proposed, and PDFM is one of reasonable methods to quickly disperse the hydrolyzing metal salts. In this study, therefore, we attempt to understand the difference of removal characteristics of natural organic matter (NOM) between pump diffusion flash mixing (PDFM) and conventional rapid mixing (CRM) for coagulation in a water treatment system, and to enhance the removal of NOM through the improved mixing process. DOC and turbidity removal by PDFM higher than those by CRM, while SUVA value of water treated by PDFM was high as compared with that by CRM. Hydrophilic NOM was more effectively removed by PDFM than CRM, since charge neutralization effect increased by quick dispersion of coagulant. The DBP formation potentials due to NOM was effectively reduced by the improved mixing (i.e., PDFM) for coagulation and could be controlled through decrease in concentration of precursor rather than reduction of activity with disinfectant.

Extreme Values of Mixed Erlang Random Variables (혼합 얼랑 확률변수의 극한치)

  • Kang, Sung-Yeol
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.145-153
    • /
    • 2003
  • In this Paper, we examine the limiting distributional behaviour of extreme values of mixed Erlang random variables. We show that, in the finite mixture of Erlang distributions, the component distribution with an asymptotically dominant tail has a critical effect on the asymptotic extreme behavior of the mixture distribution and it converges to the Gumbel extreme-value distribution. Normalizing constants are also established. We apply this result to characterize the asymptotic distribution of maxima of sojourn times in M/M/s queuing system. We also show that Erlang mixtures with continuous mixing may converge to the Gumbel or Type II extreme-value distribution depending on their mixing distributions, considering two special cases of uniform mixing and exponential mixing.