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Extreme Values of Mixed Erlang Random Variables

Sungyeol Kang*

4 Abstract B

In this paper, we examine the limiting distributional behaviour of extreme values of mixed Erlang random variables.
We show that, in the finite mixture of Erlang distributions, the component distribution with an asymptotically dominant
tail has a critical effect on the asymptotic extreme behavior of the mixture distribution and it converges to the Gumbel
extreme-value distribution. Normalizing constants are also established. We apply this result to characterize the
asymptotic distribution of maxima of sojourn times in M/M/s queuing system. We also show that Erlang mixtures
with continuous mixing may converge to the Gumbel or Type Il extreme-value distribution depending on their mixing
distributions, considering two special cases of uniform mixing and exponential mixing.
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1. Introduction

In a communication system, a typical concern
is the delay times of message units in the sys-
tem. The grade of service for the system may
be controlled by keeping the longest delay of a
group of message units below a given limit. In

such a situation, there arises a need of investi-
gating the distributional behavior of the max-
ima.

Suppose X; represent the random time in the
system of message 7, =1, 2,--,#. The maxima
of the random times in the system may be given
by M,= max {X; X, -, X,}, where X, X,,
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-+, X, are independent random variables with

distribution F. The distribution F is a finite

mixture distribution if it is of the form F(x)
m

= ZlciF (x), where mixing parameters c;
=

are nonzero real numbers that sum to 1. F is

a continuous mixture if it is defined by F(x)=
f@Fg(x)dH(a), where {F, : 8= @} isaset

of component probability distributions and the
index @ is governed by the mixing distribution
H. The aim is to determine the type of a limiting
extreme-value distribution G and normalizing

constants «, > 0, b, such that
P{(M,—b)la,<x}=F"(a,x+b,) ->G(x)

at each continuity point x of G.

The random times in the system can be often
represented by mixed Erlang random variables.
So we address the asymptotic extreme behavior
of mixtures of Erlang distributions.

Here is an overview of this study. In Section
2, for finite mixtures of Erlang distributions, we
give criteria to determine the component distri-
bution with an asymptotically dominant tail,
type of extreme-value distribution G, and nor-
malizing constants «, > 0 and b,. We use the

fact that the component distribution with an
asymptotically dominant tail in a finite mixture
distribution has a crucial effect on the asympto-
tic extreme behavior of the finite mixture. We
then relate the tail behavior of the waiting time
distributions in M/M/s queuing system to those
of finite mixture distributions of Erlang random
variables and characterize the asymptotic ex—
treme behavior of the waiting times in the sys-

tem. In Section 3, we consider a few Erlang

mixtures with continuous mixing and determine
the extreme-value distributions of the contin-
uous mixtures. In the last section, we summa-

rize our study.

2. Extreme values of Erlang
mixtures with finite mixing

2.1 Convergence of the maxima of mixed
Erlang random variables

We assume that M,= max {X;, X, -, X,},
where X, X,,-,X, are independent random
variables with distribution F. The focus is on
determining the distribution of M, for large n.
This involves finding sequences of normalizing
constants a, > 0, b, and a non-degenerate dis-

tribution function G such that

P{(M,—b,)]a,<x} (2.1)
=F"(a,x+b,) >G(x)

for each continuity point x of G. In this case,
F belongs to the domain of attraction (for max-
ima) of G, denoted by Feb(G). For standard
results of extreme value theory, see for instance
[1,6].

Extreme-value distributions. A classical re-
sult of the extreme value theory is that if (2.1)
holds, then the limiting distribution G must be
one of the following three extreme value types,

Alx)=exp(—e %), —o x 0 ;
(Gumbel distribution)
o, (x=[0 =0
exp(—x" %), x>0, for some a>0;
(Type O distribution)
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o (x)={ exp(—(—x)%), x<(, for some a>0
1, x>0

(Type O distribution)

Convergence criterion. Expression (2.1) holds
if and only if

n(1-F(a,x+b,)) — —logG(x), as n—>
(2.2)
for each x such that G(x) > 0.

We use the following result on the conver-
gence of M, under the assumption that the dis-

tribution of the X, is the finite mixture F(x)
d m
= ZI:CI’F,'(X), where ¢;#{0 and Zl:c"zl'

The limiting behavior of the maximum M, is

governed by the asymptotic behavior of the tail
of the distribution F, and this tail is critically
influenced by (or equivalent to) the tail of an
asymptotically dominant component function.

Here a component function Fjin the finite mix-
ture F = 21: c;F;(x), is said to have an

frm
asymptotically dominant tail if

Im(1—-F;(x)) (1-Fs(x))=7;

x—xe

for each /e 1=(1,2,:-,m} and
x9=sup{x | F(x)<1}, where »,=1 and
0< ;<1 for i#+d.

Lemma 1. (Kang and Serfozo [3]) Suppose, in

the mixture F= Z; ¢; Fi{x), Fy has an asy-

mptotically dominant tail such that y= 2] ¢; 7;
i=1

and F; €P(G) with normalizing constants
@, b, Then

PM,<a,x+b,}=F"a,x+b,) —G(x),

with the normalizing constants

R

@, = a, b, = b,+a,logy, if G= A,
b.=0, if G= 0,,
if G= ¥,

Using the convergence criterion (2.2) and Lem-
ma 1, we can obtain the following result which
enables us to determine the limiting extreme-
value distributions of finite mixtures of Erlangs.

Proposition 2. Let F be the distribution func-
tion given by

Fe f‘:l ciFi(x), (23)

m
where ¢;+0, 2.¢;=1, and F; is an Erlang
i=1

distribution with parameters (#;, 8;). Then
Fe D(A) with the normalizing constants
Ay = 1/0d9

b, = 07 '[logn+(n,—1)loglogn
—log (7y— D!+ logcy,],

i

where the component d is chosen such that

edge,' forie I (2.4)
a0 forie{jl8,=6,ije1}.

Proof. The component function F, has an as—

ymptotically dominant tail since, with the con—
dition (2.4),

1_Fi(x)
A% 1—Fu(x)
fi(x)

l —_——

i Falx)
o 6:8,x) " e T (= !

= hm 2a—1  — 842

xoeo 0d(6dx) e /(77(1—1)’

6" (24~ !

= —— = jimx
04 (g;i— 1)1 ==

~ (74 —r/;)e —(6:— 8%

0, for any 7+#d.
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And, it follows directly by the convergence cri-
terion (2.2) that F; €P(A) with the normal-

izing constants

271 = 1/0(1,
b,= 6, [logn+(n,—1)loglogn
~log (7,— D!].

Hence, by Lemma 1, F € D(A) with the normal-

izing constants a,= a,, b,= b,+ a,logc,.

We can see that, in determining the extreme-
value distribution G and the normalizing con-
stants a,, b, for a finite mixture distribution
with an asymptotically dominant component, we
need just the mixing parameters ¢; and the
asymptotically dominant tail ratios »; of asym-
ptotically persistent (i.e., »;> 0, i+ d) compo-
nents, in addition to the asymptotically dominant
component term. For a finite mixture of Erlang
distributions, there are no asymptotically per—
sistent components in the mixture. Thus we can
ignore all the other terms but the asymptotically
dominant one in characterizing its asymptotic
extreme behavior. This is a nice simplification

for asymptotic computations.

2.2 Application to the maxima of waiting
times in M/M/s queue

We now apply our previous results on extreme
values of mixed Erlang random variables to
characterize the asymptotic limiting behavior of
maxima of waiting times in the M/M/s queueing
system. Suppose that F is the distribution func-
tion of the sojourn time in the queuing system
and {X,, n=1} is a sequence of independent

and identically distributed random variables from

the distribution F. Our main interest is in deter-
mining the limiting extreme-value distribution of
the maximum of X{,X,,, X,.

To investigate the asymptotic extreme be-
havior of sojourn times, we first need to charac—
terize the asymptotic behavior of the upper tail
of the sojourn time distribution F. We relate the
tail behavior of the sojourn time distributions to
those of finite mixture distributions.

Let the random variable X represent time
spent waiting in the system in equilibrium and
f(x) denote its probability density function.
Then, in the case with A= (s—1) g,

A—sp+ W, (0)

- px

f(x) = 1= (—Dp “
(1—- W, (0) su—ix
A= G—D) (su—=A)e .
for x>0, (25)
. sWu)’
where W,(0)=1 SIGs—A/p) bo, and

-1

_ s—1 1 A 1 i s sp
Do-(ﬂ% n!(u)+s!(#)(3#-ﬁ))
(see [2], p. 91).

From expression (2.5), we observe the following :

e The probability density function of the wait-
ing times in the M/M/s system, represented
by (2.5), may be viewed as a mixture of two
component exponential density functions, that
is, fx)=c, Alx)+ caf2(x), Wwith compo-
nent functions
f(x)=pe ™ folx)=(sp— A)e (#P*
and mixing parameters

A—su+ pW,(0) (1= W, (0) e
A=(s—1)u A=(s—1)u

o If A<{(s—1)p, then ¢ = min{g,sy—A} and

= y €2 =

so f1(x) is asymptotically dominant with its



mixXing parameter c¢; positive. In this case, ¢,

is negative.

o If A>(s—1)u, then sg — A= min{y,su— A}
and so f4(x) is asymptotically dominant with
its mixing parameter c; positive. In this case,

¢, is negative,

And, in the case with A=(s—1) g,
F(x) is given by

£ = W, (0) e ™™
(1= W, () (s—2)

nx

ulux)e ™,

for x>0, (2.6)

where W,(0) is given in (2.5).

From the expression (2.6), we observe the

following :

® The probability density function of the wait-
ing times in the M/M/s system, represented
by (2.6), may be viewed as a mixture of two
component Erlang density functions, that is,
fx)=c filx)+ cafo(x), with component
functions fi(x)=pe * folx)=pu(pux)e **
and mixing parameters
c1= W, (0), cy= (1~ W(0))(sp—A)/ .

® The component density function fy(x) is
asymptotically dominant. Here, both mixing

parameters ¢; and ¢, are positive.

Now, with the observations above, Proposi-
tion 2 and Lemma 1, we have the following
results on the asymptotic extreme behavior of
waiting times in the M/M/s system.

Proposition 3. Suppose that the independent
sequence {X,,n =1} is from the distribution

(2.5) or (2.6) appropriately, which represents the
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waiting times in the M/M/s system. Let M, be
the maximum of X, X5, ...,X,. Then
P{M,<{a,x+b,} > exp(—ye"), —o {x{00,

where a,, b, are defined as follows :
(1) If A<(s=Dy, an=1/n, b= logn/y,
and y=(A—sp+uW,(0)/(A—(s—Du).
(@) If A>(s—Dy, a,=1/(sp—2),
b,=log n/(su—A), and
y=((1—= W, () p) (A=(s—Dp).
(@) I A= (~-Dp, a,=1/p,
b,=(logn+ loglogn— log2)/u, and
7y =(1— W, (0)(sp—A)/ .

Note that when s=1, (i) in Proposition 3
readily reduces to

P{M,< (x +logn)/(g—A)}
—exp(—e*), —© (x< o,

which is what we expect for the M/M/1 system.

The sojourn times in the system of » con-
secutive customers are actually correlated and
therefore the independent assumption is not ex-
act. However, we know that, if the traffic inten—
sities are quite low or the target customers are
separated significantly from one another, the
correlation of the sojourn times is negligible. For
an instance of this situation, consider a multi-
plexer of high-speed communication networks.
The traffic stream of the multiplexer may come
from lots of various connections. Then we may
envisage that the data units for a target con-
nection are to be sparsely interspersed in the
merged traffic stream. For such situations in
which the correlation tends to diminish, we can
apply the asymptotic distributional resuits on
M, for approximately describing the extreme



values of sojourn times for a group of z cus—
tomers. A numerical study has been made with
an acyclic three node queueing network to il~
lustrate that such an approximation is quite
effective [4].

3. Extreme values of Erlang
mixtures with continuous
mixing

3.1 In case of uniform mixing

For the following result, we consider the con-
vergence of M, under the assumption that the
distribution of X, is the mixture of Erlang dis-

tributions with continuous mixing whose mixing

distribution is uniform on [/, z].

Proposition 4. Suppose F'is a continuous mix-
ture of this form

F(x)=f1qu(x)/(u—l)d6,x>0 3.1)

where Fy is an Erlang distribution with

parameters (7, §), and 7 is fixed.

(¢) If /=0, then Fb(0,) with the
normalizing constants a,= 7n/u, b,=0.

(#) If 150, then Feb(A) with the
normalizing constants a, = 1/1,
b,=(logny+ (n—2)log log ny)/l,
where y =1/((n— D! (u—1)).

We have shown previously that in a finite
mixture, the asymptotically dominant compo-
nent is critical in the asymptotic extreme be-
havior of the mixture distribution. The limiting
extreme distribution of the finite mixture of
Erlang distributions is determined by its asym-
ptotically dominant component distribution and

its mixing parameter. This kind of approach,
however, is not applicable to mixtures with con—
tinuous mixing. Instead, we will use next two
lemmas for studying extremes of continuously-

mixed Erlang random variables.

Lemma 5. (Villasenor [7]) Let F be a distribu-

tion function with right endpoint x,= 0. Sup-

pose that, for some constants ¢> 0, w>0, 8
and &

lim (x+ 87 e “ (1 F#)=170{r<,

Then Feb(A) with normalizing constants

a,= (aw (logny) @ V)71

b — (logny)Y* _ Bloglogny
" W a’w (logny) (a—Dla
__&
@

Lemma 6. (Lamperti [5]) Let F be a distribution
function with right endpoint xy= cc. Suppose

that for some constant a >0

lim x°(1—F(x))=17, 0< y< co, (3.2)

Then Fe B(®,) with normalizing constants
a,= (rm)'*, b,=0.

The assumption (3.2) means that the distri-
bution F is tail equivalent to a Pareto distri-
bution G(x)=1— x"7, &> 0,x =1 with ara-
tio approaching to 7. In this respect, we may
interpret the relation Feb(®,) above as a

logical consequence of this tail equivalence to
the Pareto distribution.

Proof of Proposition 4. The tail function of
Fis
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1-F(x)
[ a=Fo /(u—1as

1 v's_e o)t
= J; -_—

u—1 k=0 k! d6
_ 1 & xh o —6x gk
w1 & !fle 6"do
B -
u—1 i=o k! =0 (B—1)!
Hk—i u
x' ]9=1
B =T JE=i
u—1 /z‘j"(')x (e Z;) (k—i)lx*!
I wti
—e 2‘_{.} i ) forx> 0
If /=0, then
lirgx(l—F(x))
1 p—1
= lim— 2(1—
X200 Y k=
k+ k k—1
;W (3.3)
= plu

Thus, assertion (7) follows by Lemma 6.
If 750, then

lixtglo(lx)z_”eb‘(l ~F(x))

Z1 . +k2 lZ~v+k—i
= lim 7 —_—
oo u—1 K o( (k—z)'x
—(u— Dx 2—9 u
(lx) =20 Z‘)!xH—l )
1 ) 2l -t
= lim——|——"—+ —_—
e u*l( (7= i=z (p—14+)ix’

=2 k 12*7+k—i
+ ,Z: z; (k_z)'xﬂ 1—k+i
ki
—(u~1)x 2—7 4
¢ (=) ;:) = )lx 1 )
l
(=D (u—1) °

(34)

W4e] 9
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Hence, by Lemma 5, we have assertion ().

It is interesting that the domain of attraction
of F is dependent on whether / is equal to 0
or not. Note that the extreme value distribution
of the mixture F of the component distribution
F g under the mixing distribution H may be not
of the same type as that of the component
distribution Fy in this case :if /=0, then
F e b(0,) even though F, €P(A). Compare
this resuit with the fact that a finite mixture of
Erlang distributions belongs to the domain of
attraction (for maxima) of A.

The relation (3.3) implies that the mixture of
Erlang distributions, F given by (3.1), with uni-
form mixing on [0, «} is tail equivalent to a
Pareto distribution G(x)=1— x~!, x>1 witha
ratio approaching to »/«. If F is the mixture
with uniform mixing on [/, »] and />0, we can
see from the relation (3.4) that, for 7= 2, Fis
tail equivalent to an Erlang distribution with

- parameters (7—1, ) with a ratio approaching

to 2/((p— D! (u—1).
If in (31) F, is exponential with rate 8,

Proposition 5 reduces to the following.

Corollary 7. Suppose F is the continuous mix-
ture of exponential distributions with uniform

mixing defined by
FG)= [(1=e™™)/(u=1) db, 0.

(i) I I =0, then FED(®,) with the
normalizing constants a,= »n/%, b,=0.
(#) If 150, then Fe D(A) with the
normalizing constanis a,=1/1,
b, = (logny— log logny)/1,
where y=1/(u—1).
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3.2 In case of exponential mixing

Now, we assume that the distribution of X,

is the mixture of Erlang distributions with con-
tinuous mixing whose mixing distribution is
exponential with rate A. We then obtain the fol-

lowing result on the convergence of M,,.

Proposition 8. Suppose F is a mixture distri-

bution with exponential mixing of this form
Fx)= J(; Fo(x)2e %6, x>0, (3.5)

where Fgis an Erlang distribution with param-
eters (7, ). Then, Feb(®,;) with the nor-

malizing constants a, = 7in, b,=0.

Proof. The tail function of F is

L ree me;; e_g’;!(ﬁx)k Ae %40
=1 k
- x-i/l =0 ( x-i/l )  forx20
Then
lim x(1—F(x)) = lim x)_:_/l,i ,:(l) ( xili )k
= 7 36)

The assertion follows by Lemma 6.

Note from relation (3.6) that the mixture (3.5)
of Erlang distributions with exponential mixing
is tail equivalent to a Pareto distribution

G(x)=1-x""', x> 1 with a ratio approaching
to 7A.

4. Conclusion

In this study, we have examined the limiting

distributional behaviour of extreme values of
mixed Erlang random variables. We have shown
that the distribution of the maxima of indepen-
dent random variables converges to a Gumbel
extreme-value distribution when the distribu-
tions of the variables are finite mixtures of
Erlang distributions. The key idea is that the
limiting distribution is determined by one com-
ponent distribution among the mixtures whose
tail dominates the other tails. We have applied
these results to approximate the limiting distri-
bution of the maxima of waiting times in M/M/s
queuing system. This application of the Gumbel
extreme-value distribution to the maxima of
sojourn times is quite effective in case either the
traffic to the system is light or the arrivals of
target units are sparsely interspersed. We have
also found that the extreme-value distributions
of Erlang mixtures with continuous mixing are
not always of the same type as those of their
component distributions, unlike to the case of
finite mixtures. We have shown that, for two
special cases of uniform mixing and exponential
mixing, they may converge to the Gumbel or
Type I extreme-value distribution depending

on their mixing distributions.
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