• Title/Summary/Keyword: Mixing Plane Model

Search Result 33, Processing Time 0.019 seconds

Shape Optimization of A Micromixer with Herringbone Grooves Using Kriging Model (헤링본 미세혼합기의 크리깅 모델을 사용한 최적형상설계)

  • Ansari, Mubashshir Ahmad;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.711-717
    • /
    • 2007
  • Shape optimization of a staggered herringbone groove micromixer using three-dimensional Navier-Stokes analysis has been carried using Kriging model. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique with Kriging model is applied to optimize the shape of the grooves on a single wall of the channel. Three design variables, namely, the ratio of groove width to groove pitch, the ratio of the groove depth to channel height ratio and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling mixing in microdevices.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

Roughness effect on performance of a multistage axial compressor (다단 축류압축기의 표면조도가 성능에 미치는 영향)

  • Han, Kyung-ho;Kang, Young-seok;Kang, Shin-hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.264-270
    • /
    • 2002
  • This paper presents roughness effects on flow characteristics and efficiency of multi-stage axial compressor using numerical simulation. which is carried out with a commercially available software, CFX-TASCflow. In this paper, the third of four stages of GE low pressure compressor is considered including me stator and rue rotor. Mixing-plane approach is adopted to model the interface between the stator and the rotor: it is appropriate for steady state simulation. First, a flat plate simulation was performed to validate how exact the numerical simulation predicts the roughness effect for smooth and rough walls. Then GE compressor model was calculated about at each roughness height. Concluding, very small roughness height largely affects the performance of compressor and the increasing rate of loss decrease as roughness height increase.

  • PDF

Performance Analysis of a Torque Converter with Three Dimensional Flow Simulation (3차원 유동해석을 통한 토크 컨버터의 성능분석)

  • Shin, S.S.;Ahn, H.H.;Lee, T.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.15-23
    • /
    • 1998
  • A three dimensional simulation of the fluid flow in an automotive torque converter was conducted adopting the mixing plane model implemented in the computational fluid dynamics program CFD-ACE. The present numerical results for performance characteristics showed a good agreement with the experimental results. In the flow of the torque converter, recirculating flow regimes were found mostly at the suction side of each element, which caused the performance decrease. The recirculating flow can be minimized by the optimization of the blade geometries.

  • PDF

Numerical Analysis on the Turbulent Mixing Flow Field of $45^{\circ}$ Impinging Round Jet ($45^{\circ}$ 원형충돌분류의 난류혼합유동장에 대한 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.38-45
    • /
    • 2011
  • The computational flow numerical analysis was introduced to predict thc turbulent characteristics in the mixing flow structure of $45^{\circ}$ impinging round jet. This analysis has been carried out through the commercial fluent software. Realizable(RLZ) k-${\varepsilon}$ was used as a turbulent model. It can be known that mean velocities analysed through RLZ k-${\varepsilon}$ turbulent model comparatively predict well the experiments and show well the elliptic shape of mixing flow structure in the Y-Z plane, but analysed turbulent kinetic energies show somewhat differently from the experiments in certain regions.

Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner (진공청소기용 저소음 터보팬 내부 유동 해석)

  • Lee, Ki-Choon;Kim, Chang-Jun;Hur, Nahmkeon;Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.14-20
    • /
    • 2003
  • In this study an analysis of the flow characteristics in three types of turbo-fans for a vacuum cleaner was performed by using CFD. The characteristics of three models calculated for various rotating speed for flow rates are obtained and compared with measured data. The mixing plane approach is applied to compute the flow between impeller and diffuser. The results show that the model that is modified to reduce fan noise gives stable flow characteristics in operating range than the original model, with both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and the peak pressure at BPF can be relieved, it is anticipated that the modified model give much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements. The good agreement between the predictions and measurement results confirms the validity of this study.

Internal Flow Analyses of Diagonal Type Blowers Using a Quasi-3-Dimensional Method Considering Spanwise Mixing and Tip Clearance Effect Due to Secondary Flows (이차흐름에 의한 스팬방향의 믹싱효과와 선단틈새흐름을 고려한 준 삼차원 사류송풍기 내부흐름 해석)

  • Kim, Chan-Kyu;Jun, Yong-Du;Kim, Tae-Whan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.137-146
    • /
    • 2002
  • This paper presents a quasi-3-dimensional calculation method considering secondary flows in the impellers of diagonal flow blowers. A Quantitative estimation of the secondary flow effects is made by using secondary flow theories. In order to verify the validity of the adopted models, that is, span-wise mixing model and the tip clearance model, numerical simulations are performed for two different types of impellers of diagonal flow blowers which are designed differently. Numerical experiments are conducted for each of a constant tangential velocity type impeller, and a free vortex type impeller, both at two different flow coefficients. According to the simulation results, it was found that the present model considering span-wise mixing and tip clearance effect shows better agreements with the experimental data than those without these models in terms of the flow velocity and the angle distribution.

  • PDF

Prediction of Asymmetric Turbulent Fluid Flow and Heat Transfer in the Parallel Plates (평행평판내 비대칭 난류유동과 열전달의 예측)

  • 오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.303-310
    • /
    • 1998
  • We report on the analytical results of examination of fully developed asymmetric flow and heat transfer between parallel plane plates. The asymmetry was introduced by roughening one of the plane while the other was left smooth. The integral method together with a turbulence model based on modified Prandtl's mixing length theory for the rough was used to determine the velocity distribution and friction. The temperature distrtibution is then predicted and heat transfer coefficients are calculated. The present paper shows that the heat transfer increases more than the friction factor for a given roughness structure. Generally the results show the strong effect of asymmetry on engineering parameters. Furthermore it is the roughness structure which influences the nature of asymmetry and heat transfer.

  • PDF

Meridional Circulations in a Sliced Cylinder (기울어진 회전 원판에 의한 원통형 용기내의 자오면 유동의 크기에 관한 연구)

  • KIM Jae Won;LIM Hong Sick
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.52-57
    • /
    • 1996
  • Mixing is most important for developing an electric washer which transforms angular momentum from rotating solid wall to laundry clothes inside it. For magnification of this mixing effect, some inventions are introduced to washing machine system, i. e., washing plate, washing rod, and even for washing cap in a model of a Korean manufacture. However, the previous efforts show dissatisfaction up till now. In this paper, a triumph to enhance mixing effects to increase washing performance is presented and verified by numerical investigation. The present model to simulate a washing tub is the simple circular cylinder with two endwall disks which is completely filled with a viscous liquid. The present improvement is to change mounting position of a bottom disk of the model cylinder. Therefore, the aim of this work just proposes a new idea, which is numerically inspected, to a producer of washing machine, In detail, this invention is alternating the mounting position of a rotating bottom disk. Actually skewed pulsator is placed in steady of a flat disk, so the two endwall disks at top and bottom are not in parallel. The angle between an inclined bottom disk and the horizontal plane is fixed as 5 degree and physical domain to consider poses a sliced cylinder. Flow fields in both a right circular cylinder and the present improved model are fully depicted by numerical integration on a body fitted nonorthogonal regular uniform grid system. Numerical data to explain flow structure are plotted for understanding of the effects of the inclined disk. Also enhanced mixing effects by the inclined rotating disk are gauged by accurate numerical data used in this work.

  • PDF

The Effect of Turbine Blade Pitch on the Gas Turbine Engine Performance (터빈의 피치 간격이 가스터빈 엔진 성능에 미치는 영향)

  • Kim, Jae-Min;Kim, Kui-Soon;Choi, Jeong-Yeol;Jung, Yong-Wun;Hwang, In-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-55
    • /
    • 2008
  • We have simulated the performance of a simple engine model with a gas turbine engine simulation program based on CFD. 2-dimensional Navier-Stokes code for the viscous flow was applied to simulate a compressor and a turbine, and the chemical equilibrium code with the lumped method was applied to simulate the combustor. Unsteady-flow phenomenon between rotor and stator of the compressor and the turbine was analyzed by steady mixing-plane method. In this way, the influence of the turbine blade pitch on the engine was investigated. It was shown that the compressor is operated at more higher pressure conditions as narrower the pitch distance of the turbine.