• Title/Summary/Keyword: Mixed-ligand

Search Result 58, Processing Time 0.026 seconds

A Polarographic Study of Mixed-Ligand Complex Formation by the Reactions of Histidine and Hydroxide Ion with Pb (Ⅱ), Cd (Ⅱ) and Cu (Ⅱ) (납 카드뮴 및 구리의 Histidine과 수산화이온과의 혼합착물 생성의 폴라로그라프적 연구)

  • Kim, Kyo-Su;Park, Yung-Kyu;Suh, Jong-Duck;Lee, Chul-Heui
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.357-362
    • /
    • 1973
  • The polarographic behaviors of Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) in histidine solutions were studied at ionic strength $({\mu})$ of 0.1 with the use of $NaClO_4$ as a supporting electrolyte. The formation constants of the mixed-ligand complexes of Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) were calculated by Schaap's method in the presence of both histidine and hydroxide ion. The results of the electrode reactions in the systems are also discussed.

  • PDF

Synthesis, Characterization and in vitro Antibacterial Studies on Mixed Ligand Complexes of Iron(III) Based on 1,10-phenanthroline

  • Tigineh, Getinet Tamiru;Sitotaw, Getu;Workie, Amogne;Abebe, Atakilt
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.203-208
    • /
    • 2021
  • As part of our attempt to discover novel active compounds against multi-drug resistant pathogens, we hereby report two new complexes of iron(III) with formulae: [Fe(L1)2(H2O)2]Cl3 and [Fe(L1)2(L2)(H2O)]Cl2 where L1 = 1,10-phenanthroline (C12H8N2) and L2 = guanide (C5H4N5O-). The synthesized complexes were characterized using spectroscopic analysis (ESI-MS, ICP-OES, FT-IR, and UV-Vis), cyclic voltammetry, CHN analysis, gravimetric chloride determination, melting point determination, and conductance measurement. Octahedral geometries are assigned to both complexes. In vitro antibacterial activity was tested on two Gram-positive (Staphylococcus aureus, Streptococcus epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria using the disc diffusion method. The complexes demonstrated appreciable activity against these pathogens. Interestingly, the [Fe(L1)2(L2)(H2O)]Cl2 complex manifested a higher degree of inhibition against the drug-resistant Gram-negative bacteria than the commercially available drug, namely erythromycin.

Synthesis and Characterization of the Mixed-valence $[Fe^{II}Fe^{III}BPLNP(OAc)_2](BPh_4)_2$ Complex As a Model for the Reduced Form of the Purple Acid Phosphatase

  • Lee, Jae Seung;Jung, Dong J.;Lee, Ho Jin;Lee, Gang Bong;Heo, Nam Hoe;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.969-972
    • /
    • 2000
  • [Fe II Fe III $BPLNP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)ami-no)methyl]-4-nitrophenol (HBPLNP) . Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electrochemical methods. Complex 1 exhibits two strong bands at 498 nm $(\varepsilon=$ 2.6 ${\times}10^3M-^1cm-^1)$ and 1363 nm $(\varepsilon=$ 5.7 ${\times}10^2M-^1cm-^1)$ in $CH_3CN.$ These are assigned to phenolate-to-FeIII and intervalence charge-transfer transitions, respectively. NMR spectrum of complex 1 exhibits sharp isotropically shifted resonances, which number is half of those expected for a valence-trapped species, indicating that electron transfer between FeⅡ and FeⅢ centers is faster than NMR time scale at room temperature. Complex 1 undergoes quasireversible one-electron redox processes. The $FeIII_2/FeIIFeIII$ and $FeIIFeIII/FeII_2$ redox couples are at 0.807 and 0.167 V ver-sus SCE, respectively. It has Kcomp = 5.9 ${\times}$10 1s(acetato) ligand combination sta-bilizes a mixed-valence FeIIFeIII complex in the air. Interestingly, complex 1 exhibits intense EPR signals at g = 8.56, 5.45, 4.30 corresponding to mononuclear high-spin FeⅢ species, which suggest a very weak magnetic coupling between the iron centers. Magnetic susceptibility study shows that there is a very weak antiferromag-netic coupling (J = $-0.78cm-^1$, H = $-2JS_1${\times}$S_2)$ between FeII and FeIII centers. Thus, we can suggest that complex 1 has a very weak antiferromagnetic coupling between the iron centers due to the electronic effect of the nitro group in the bridging phenolate ligand.

Spectroscopic, Thermal and Biological Studies of Zn(II), Cd(II) and Hg(II) Complexes Derived from 3-Aminopyridine and Nitrite Ion

  • Dhaveethu, Karuthakannan;Ramachandramoorthy, Thiagarajan;Thirunavukkarasu, Kandasamy
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.712-720
    • /
    • 2013
  • Microwave assisted syntheses of Zn(II), Cd(II) and Hg(II) complexes with 3-aminopyridine (3AP) and nitrite ($NO_2{^-}$) ions have been reported. The metal complexes were characterized by elemental analyses, molar conductance, IR, Far-IR, electronic, NMR ($^1H$, $^{13}C$), thermal and electron impact mass spectral studies. The spectroscopic studies reveal the composition, the nature of nitrite ligand in the complexes, electronic transitions, chemical environments of C and H atoms thermal degradation of the complexes. On the basis of characterization data, distorted tetrahedral geometry is suggested for Zn(II), Cd(II) and Hg(II) complexes. The organic ligand (3AP) and their metal complexes were screened against gram negative pathogenic bacteria and fungi in vitro. The results are compared with our previous report J. Korean Chem. Soc. 2013, 57, 341 on 4-aminopyridine and nitrite ion complexes of the same metal ions.

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

"Turn-on" type colorimetric/fluorimetric probe for selective detection of Cu2+ at neutral pH condition

  • Lee, Hyun Jung;Saleem, Muhammad;Lee, Ki Hwan
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.88-90
    • /
    • 2015
  • The design and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of rhodamine B based fluorogenic and chromogenic receptor for selective copper detection in the complete organic or mixed aqueous-organic media at neutral pH under ambient condition. The ligand exhibited the remarkable increment in the fluorescence emission and UV-visible absorption signal intensities at 587 and 547 nm, respectively, on induction of copper ion while the ligand solution remain completely silent on addition of varieties of other metal ions.

Structure of Mixed-Anions Tris(2-pyridylmethyl)amine Mn Complex, TPAMnη2-NO3)(η-CIO4)

  • Shin, Bok-Kyu;Kim, Mi-Hyang;Han, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.417-420
    • /
    • 2007
  • Mononuclear mixed-anions Mn complex of TPAMn(η2-NO3)(η-ClO4), where TPA is tris(2-pyridylmethyl)-amine, has been synthesized and characterized. The neutral TPAMn(η2-NO3)(η-ClO4) was obtained from the reaction between Mn(NO3)2·4H2O and [H3TPA](ClO4)3 in MeOH. X-ray crystallographic structure of mononuclear TPAMn(η2-NO3)(η-ClO4) complex showed a seven-coordinated geometry with a tripodal tetradentate TPA, a terminal perchlorate and an η2-bound nitrate.