This study deals with the productivity improvement on a flow production system with the consideration of line-balancing. In a flow production system, similar product models are produced on a same assembly line, the predefined process order and the limitation of total worker number. The system can be increased the work-in -process(WIP) inventory and the worker's idle time. In this study, the worker assignment model is developed to assign evenly workload of process to each product model in such a manner that each process has the different number of worker. This worker assignment model is the mathematical model that determines worker number in each process such that the idle time of processes is reduced and the utilization of worker is improved. We use a simulation technique to simulate the production line proposed by the mathematical model and apply real production line. With the result of simulation, this study analyzes the propriety of production line and proposes the alternatives of new production line
This paper suggests a boltzman machine neural network model to determine model input sequences in line balancing process of mixed model assembly line. We first present a proper energy function, next determine the value of parameters using simulation process.
This paper is concerned with the integrated problem of line balancing and model sequencing in mixed model assembly lines(MMALBS), which is important to efficient utilization of the lines. In the problem, we deal with the objective of minimizing the overall line length To apply the GAs to MMALBS problems, we suggest a GA representation which suitable for its problems, an efficient decoding technique for the objective, and genetic operators which produce feasible offsprings. Extensive experiments are carried out to analyze the performance of the proposed algorithm. The computational results show that our algorithm is promising in solution quality.
This paper presents a new method that can efficiently solve the integrated problem of line balancing and model sequencing in mixed-model U-lines (MMULs). Balancing and sequencing problem are important for an efficient use of MMULs and are tightly related with each other. However, in almost all the existing researches on mixedmodel production lines, the two problems have been considered separately. In 1his research, an endosymbiotic evolutionary algorithm, which is a kind of evolutionary algorithm, is adopted as a methodology in order to solve the two problems simultaneously. Some evolutionary search capability, rapidity of convergence and population diversity. The proposed algorithm is compared with the existing evolutionary algorithm in terms of solution quality. The experimental results confirm the effectiveness of our approach.
A mixed model production line is a production line where a variety of product models are produced. In U-shaped production lines (called U-lines) used in just-in-time production system, the strategy of mixing product models is often used to provide various types of products to customers in time. Line balancing and model sequencing problems are important for an efficient use of mixed model U-lines. Although the two problems are tightly interrelated with each other, prior researches have considered them separately or sequentially. This paper presents a new method using a coevolutionary algorithm that can solve the two problems at the same time. To promote diversity and search efficiency, in this paper the evolutionary system is based on the localized interactions within and between populations. Methods of selecting environmental individuals and evaluating fitness are developed. Efficient genetic representations and operator schemes are also provided. When designing the schemes, we take into account the features specific to the problems. The experimental results demonstrate that the proposed algorithm is superior to existing approaches.
This paper is concerned with the integrated problem of line balancing and model sequencing in mixed model assembly lines(MMALBS), which is important to efficient utilization of the lines. In the problem, we deal with the objective of minimizing the overall line length To apply the GAs to MMALBS problems, we suggest a GA representation which suitable for its problems, an efficient decoding technique for the objective, and genetic operators which produce feasible offsprings. Extensive experiments are carried out to analyze the performance of the proposed algorithm. The computational results show that our algorithm is promising in solution quality.
In this study, we consider the assembly line balancing (ALB) problem which is known as an very important decision dealing with the optimal design of assembly lines. We consider ALB problems with soft constraints which are expected to be fulfilled, however they are not necessarily to be satisfied always and they are difficult to be presented in exact quantitative forms. In previous studies, most researches have dealt with hard constraints which should be satisfied at all time in ALB problems. In this study, we modify the mixed integer programming model of the problem introduced in the existing study where the problem was first considered. Based on the modified model, we propose a new algorithm using the genetic algorithm (GA). In the algorithm, new features like, a mixed initial population selection method composed of the random selection method and the elite solutions of the simple ALB problem, a fitness evaluation method based on achievement ratio are applied. In addition, we select the genetic operators and parameters which are appropriate for the soft assignment constraints through the preliminary tests. From the results of the computational experiments, it is shown that the proposed algorithm generated the solutions with the high achievement ratio of the soft constraints.
This paper concerns with the problem of mixed model assembly sequencing using neural net. In recent years, because of two characteristics of it, massive parallelism and learning capability, neural nets have emerged to solve the problems for which more conventional computational approaches have proven ineffective. This paper proposes a method using neural net that can consider line balancing and grouping problems simultaneously. In order to solve the mixed model assembly sequencing of the motor industry, this paper uses the modified ART1 algorithm.
When balancing mixed model assembly lines (MMALs), workload smoothness should be considered on the model-by-model basis as well as on the station-by-station basis. This is because although station-by-station assignments may provide the equality of workload to workers, it causes the utilization of assembly lines to be inefficient due to the model sequences. This paper presents a genetic algorithm to improve the workload smoothness on both the station-by-station and the model-by-model basis in balancing MMALs. Proposed is a function by which the two kinds of workloads smoothness can be evaluated according to the various preferences of line managers. To enhance the capability of searching good solutions, our genetic algorithm puts emphasis on the utilization of problem-specific information and heuristics in the design of representation scheme and genetic operators. Experimental results show that our algorithm can provide better solutions than existing heuristics. In particular, our algorithm is outstanding on the problems with a larger number of stations or a larger number of tasks.
본 논문에서는 디지털 도어록 혼류 조립 공정에서의 시뮬레이션 분석모델을 제안한다. 이 모델의 목적은 디지털 도어록 생산 공정 설계에 있어서 여러 대안의 성능에 대해 평가하는 것이다. 시뮬레이션 모델을 개발하기 위하여 먼저 시간연구가 수행되었다. 동시에 ARENA 시뮬레이션 도구를 이용하여 공정분석을 수행하였다. 그 결과 현재의 디지털 도어록 혼류 생산 공정은 여러 품종의 수요 증가에 적절한 생산방식을 제공하지 못한다는 문제점을 발견하였고 이를 개선하기 위한 대안을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.