• Title/Summary/Keyword: Mixed soil method

Search Result 265, Processing Time 0.024 seconds

Shear Strength Properties of Fiber Mixed Soil (섬유혼합토의 전단강도 특성)

  • Cha, Hyun-Ju;Choi, Jae-Won;Lee, Sang-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

A model study for the rational classification of mixed soil layer (혼합된 토층의 합리적 분류를 위한 모델 연구)

  • Kim, Byongkuk;Jang, Seungjin;Son, Inhwan;Kim, Joonseok
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.194-202
    • /
    • 2018
  • Purpose: It is necessary to set up a standardized method for classifying mixed soil layer that contains sand, gravel and boulder for engineering purposes. Method: Different size of soils was classified mixed soil layer by suggests unified soil classification method. Results: This paper suggests unified soil classification model for different size of soils where many authorities have their own system. Conclusion: Soil stratum classification method using appearing frequencies of gravels and weight ratio of boulders could be used to judgement in many cases.

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

Characterization of the mixed soil with waste and application to geotechnical field (폐기물을 포함한 혼합토의 특성 및 지반공학분야에의 응용)

  • 이기호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.72-84
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, we investigate the shear characteristics of dredged sluge mixed with oyster shells. the apparent modulus of elasticity of the this mixture are obtained from the triaxial compression tests and is utilized to characterize the apparent modulus of elastic of the oyster shells by carrying out some numerical analysis based upon the homogenization theory. We got the conclusion by a series of experiment, 1) It is verified that modulus of elasticity of dredged clay is improved by mixing with oyster shells. 2) The homogenization method for deducing apparent modulus of elasticity of oyster shells, which can consider micro-structure of mixed soil, is introduced. The elastic modulus is affected from the skeleton structure of oyster shell. The effect of 49kPa is bigger than that of 98kPa.

  • PDF

The comparison of the adsorption characteristic of heavy metals onto soil mixed with food compost using retardation coefficient (지연계수를 이용한 음식물 퇴비 혼합 토양의 중금속 흡착특성 비교)

  • Joo, You-Yoen;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.245-250
    • /
    • 2008
  • Adsorption experiment was carried out to find the adsorption capacity and characteristics of heavy metals(Cd, Pb) onto soil and mixed soil with food compost. Result showed that mixed soil having higher organic content adsorbed more heavy metal than soil, indicating that food compost can be used effectively to prevent soil pollution. Linear adsorption isotherm which adopted to find the adsorption characteristics was used to calculate Retardation Factor(R). The value of Retardation Factor(R)s of Pb and Cd in mixed soil, found as 34.54, 24.42 respectively, are higher than those in soil which were found as 4.64, 3.67, respectively. The value of Retardation Factor(R) using Freundlich adsorption isotherm could be presented by the functions of concentration and showed similar result as the linear one. But Freundlich adsorption isotherm showed higher relationship than linear one and the retardation factor(R) from freundlich adsorption isotherm was thought as more effective method to assess adsorption capacity because it could reflect gradient and intercept of the isotherm.

A Study for Making Planting Ground and Irrigation System for Greening Artificial Ground of Planter Type (화단형태의 인공지반 녹화를 위한 식재토양조성 및 관수방안 연구)

  • Kim, Sun-Hae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.12-18
    • /
    • 2004
  • This study is to make plans for perpendicular greening with artificial ground of planter type to improve urban environment. The experiments of this study are performed to find out the suitable soil and irrigation method for artificial ground of planter greening. Thereupon, organic or inorganic soil improvement material is mixed with soil of each planter as experiment, In result, the plants in soil mixed organic soil improvement material thrive rather than that in soil mixed inorganic material, It is to be desired that the planter equip with the irrigation system, be wider than planter and be planted shrubs for positive plant growth. As for irrigation system, drip irrigation is effective on plant growth southern exposure but Ebb and Flow is effective eastern exposure. Therefore, irrigation system should consist of two types above plus keeping water on the bottom of planter to save water and store rainwater.

Investigation of Environmental characteristics on fibrous biodegradable polymer for slope revegetation (식생기반재로 이용되는 섬유상 생분해소재의 환경성 고찰)

  • Kim, Duk-Sik;Kim, Dong-Sik
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.23-35
    • /
    • 2007
  • Recently, for places with poor vegetating environment, such as slopes made of weathered soil or rocks, erosion tranquilizers, coverings and composite fertilizers have been mixed with seeds and sprinkled onto soil. Also, these plant revegetations have been mixed with nets and used to strengthen cohesion. However, this technique often obstructed plant growth and caused pollution because of not decomposing nets. This study has tested influence on plant revegetation B for slope of weathered soil and rocks and decomposition of naturally decomposing polyester filament yarn. In result, it was showed that plant revegetation B does not harm environment in case of applying it to soil slope and enhance protection capacity of slopes as time goes by. Also, naturally decomposing polyester filament yam was analyzed its physical properties with the passage of time and was known that naturally decomposing polyester filament yarn transformed into a structure easy to decompose by hardening. Thus it is considered that the revegetation method used this study was very effective method for plant establishment and stability of slope.

  • PDF

Waterproof Characteristic for Environmental Water Flows in Small Streams (소규모 하천 친환경 물흐름을 위한 차수특성)

  • Park, Min-Cheol;Kim, Seong-Goo;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.192-199
    • /
    • 2010
  • This research produced internal model tester ($2.0m{\times}2.0m{\times}1.0m$) to evaluate the field application of Paju Unjeong District water recycling system for small streams eco-friendly river bed disparity method for the first time in Korea and conducted comparative analysis of the Paju Unjeong District water recycling system field test results and infiltration rate result of internal tests by each rainfall intensity following surface material. Infiltration rate result of internal tests concrete pavement by rainfall intensity following surface material, asphalt pavement, bentonite mate, stabilized soil construction and mixed soil construction manifested low infiltration rate. On the contrary, compaction soil, grassland and water permeable packaging materials resulted in significant amount of infiltration rate. As for the field permeability test results, they were manifested similar tendency as indoor permeability test results and they satisfied the standard for standard of water permeability of domestic disparity facility (less than $1.0{\times}10-7cm$/sec). As compaction rate increased, unconfined compression strength increased as well while coefficient of water permeability decreased.

  • PDF

Adhesion of Soil to Polyester Fabric According to Polarity of Oily Soil in Oily/Particulate Mixed Soil System (지용성/고형오구의 혼합오염 계에서 지용성오구의 극성에 따른 Polyester직물에의 오구부착)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.7
    • /
    • pp.1175-1183
    • /
    • 2010
  • This study investigates the effect of polarity of oily soil on adhesion of oily and particulate soil to PET fabric in oily/particulate mixed soil systems. The potential energy of interaction between two particles was examined as a fundamental environment of adhesion of soil to fabrics. The ${\zeta}$-potential of ${\alpha}-Fe_2O_3$ particles was measured by a microelectrophoresis method, and the potential energy of interaction between two particles was calculated by using the Verwey-Overbeek theory. The ${\zeta}$-potential of particle and the potential energy of interaction between two particles was slightly influenced by the polarity and type of oily soil, but increased with the increased anionic surfactant concentration and amount of oily soil. The adhesion of oily soil to fabric increased with the additional amount of polarity of oily soil and decreased surfactant concentration that was relatively high at a temperature of $60^{\circ}C$ surfactants solution. The adhesion of ${\alpha}-Fe_2O_3$ particle to PET fabric decreased with an increased amount and polarity of oily soil and increased surfactant concentration Although some similarity exists, the general trend of the adhesion to fabric by particulate soil differ from oily soil.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF