• Title/Summary/Keyword: Mixed noise

Search Result 340, Processing Time 0.03 seconds

Enhanced Pulse Amplitude Estimation Method for Electronic Warfare Support (전자전 지원을 위한 향상된 펄스 세기 추정 기법)

  • Lee, Yu-Ri;Kim, Dong-Gyu;Kwak, Hyungyu;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.649-660
    • /
    • 2017
  • In electronic warfare, the pulse amplitude, one of information of a pulse signal emitted by an enemy, is used for estimating distance from the source and for deinterleaving mixed source signals. An estimate of pulse amplitude is conventionally determined as the maximum magnitude of a Fourier transformed signal within its pulse width which is estimated pre-step in an electronic warfare receiver. However, when frequency modulated signals are received, it is difficult to estimate their pulse amplitudes with this conventional method because the energy of signals is dispersed in frequency domain. In order to overcome this limitation, this paper proposes an enhanced pulse amplitude estimation method which calculates the average power of the received pulse signal in time domain and removes the noise power of the receiver. Simulation results show that even in case the frequency modulated signal is received, the proposed method has the same performance as estimating the pulse amplitude when unmodulated signal is received. In addition, the proposed method is shown to be more robust to an estimation error of pulse width, which affects the estimation performance of pulse amplitude, than the conventional method.

Empirical Mode Decomposition using the Second Derivative (이차 미분을 이용한 경험적 모드분해법)

  • Park, Min-Su;Kim, Donghoh;Oh, Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.335-347
    • /
    • 2013
  • There are various types of real world signals. For example, an electrocardiogram(ECG) represents myocardium activities (contraction and relaxation) according to the beating of the heart. ECG can be expressed as the fluctuation of ampere ratings over time. A signal is a composite of various types of signals. An orchestra (which boasts a beautiful melody) consists of a variety of instruments with a unique frequency; subsequently, each sound is combined to form a perfect harmony. Various research on how to to decompose mixed stationary signals have been conducted. In the case of non-stationary signals, there is a limitation to use methodologies for stationary signals. Huang et al. (1998) proposed empirical mode decomposition(EMD) to deal with non-stationarity. EMD provides a data-driven approach to decompose a signal into intrinsic mode functions according to local oscillation through the identification of local extrema. However, due to the repeating process in the construction of envelopes, EMD algorithm is not efficient and not robust to a noise, and its computational complexity tends to increase as the size of a signal grows. In this research, we propose a new method to extract a local oscillation embedded in a signal by utilizing the second derivative.

Hangeul detection method based on histogram and character structure in natural image (다양한 배경에서 히스토그램과 한글의 구조적 특징을 이용한 문자 검출 방법)

  • Pyo, Sung-Kook;Park, Young-Soo;Lee, Gang Seung;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In this paper, we proposed a Hangeul detection method using structural features of histogram, consonant, and vowel to solve the problem of Hangul which is separated and detected consonant and vowel The proposed method removes background by using DoG (Difference of Gaussian) to remove unnecessary noise in Hangul detection process. In the image with the background removed, we converted it to a binarized image using a cumulative histogram. Then, the horizontal position histogram was used to find the position of the character string, and character combination was performed using the vertical histogram in the found character image. However, words with a consonant vowel such as '가', '라' and '귀' are combined using a structural characteristic of characters because they are difficult to combine into one character. In this experiment, an image composed of alphabets with various backgrounds, an image composed of Korean characters, and an image mixed with alphabets and Hangul were tested. The detection rate of the proposed method is about 2% lower than that of the K-means and MSER character detection method, but it is about 5% higher than that of the character detection method including Hangul.

Translation and Adaptation of the Children's Home Inventory for Listening Difficulties (CHILD) into Korean (가정환경 아동듣기평가(CHILD) 부모용 설문지의 한국어 번역 및 적용 연구)

  • Choi, Jae Hee;Seo, Young Ran;Jang, Hyun Sook
    • 재활복지
    • /
    • v.20 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • The Children's Home Inventory for Listening Difficulties (CHILD) questionnaire has been applied for assessing listening and communication difficulties in various home situations for children with hearing loss. The purpose of the study was to translate the CHILD questionnaire for parents into Korean and verify reliability and validity of Korean version of CHILD (CHILD-K). CHILD-K was completed by 55 parents of children (from ages 3~12 years) using cochlear implants (CI). Among the 55 children, 27 were in preschool and 28 in elementary. Internal consistency reliability of CHILD-K was verified by Chronbach's alpha. The mixed factorial ANOVA was conducted to compare the effects of the age group and situation factors (Quiet, Noise, Distance, Social, and Media factors) on the score of CHILD. The results indicated that CHILD-K showed excellent internal consistency reliability (${\alpha}=.96$). The CHILD scores among age groups were significantly different as the older age group resulted in higher scores in all situations except Distance. For both groups the mean scores for the Quiet situation were significantly higher than other situations, and the mean scores for the Social situation were significantly lower than other situations. Moreover, analysis showed that children with CI had difficulties in the Social situation combined with other situation factors. The results indicate that the Korean version of CHILD questionnaire is a reliable tool for the assessment of communication abilities in home situation in Korean-speaking children using CI.

Analytical Study on Vibrational Properties of High Damping Polymer Concrete (고 감쇠 폴리머 콘크리트의 진동 특성에 관한 해석적 연구)

  • Kim, Jeong-Jin;Kim, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.119-125
    • /
    • 2020
  • Research on high-attenuation concrete for the vibration reduction performance by mixing epoxy-based synthetic resins and aggregates is actively being conducted. The curing time of high-attenuation concrete is very short because water is not used, and the physical and dynamic properties are very excellent. therefore, it is expected to be widely used in building structures requiring reduction of interior-floor noise and vibration. Furthermore, A way to expand the applicability of the high-damping concrete mixed with polymer in the field of reinforcement material have been variously studied. In order to replace polymer concrete with ordirnary concrete and existing anti-vibration reinforcement material, it is necessary to review overall vibration reduction performance considering physical properties, dynamic properties, productivity and field applicability. In this study, the physical and dynamic properties of polymer concrete by epoxy mixing ratio compared with ordirnary concrete. As a result, the elastic modulus was similar. On the other hand, polymer concrete for the compressive, tensile, and flexural strengths was quite more excellent. In particular, the measured tensile strength of polymer concrete was 4-10 times higher than that of ordirnary concrete. it was a big difference, and the frequency response function and damping ratio was studied through modal test and finite element analysis model. The dynamic stiffness of polymer concrete was 20% greater than that of ordirnary concrete, and the damping ratio of polymer concrete was approximately 3 times more than that of ordirnary concrete.

Software Implementation of Welding Bead Defect Detection using Sensor and Image Data (센서 및 영상데이터를 이용한 용접 비드 불량검사 소프트웨어 구현)

  • Lee, Jae Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.185-192
    • /
    • 2021
  • Various methods have been proposed to determine the defect detection of welding bead, and recently sensor data and image data inspection have been steadily announced. There are advantages that sensor data inspection is highly accurate, and two-dimensional-based image data inspection is able to determine the position of the welding bead. However, when analyzing only with sensor data, it is difficult to determine whether the welding has been performed at the correct position. On the other hand, the image data inspection does not have high accuracy due to noise and measurement errors. In this paper, we propose a method that can complement the shortcomings of each inspection method and increase its advantages to improve accuracy and speed up inspection by fusing sensor data inspection which are average current, average volt, and mixed gas data, and image data inspection methods and is implemented as software. In addition, it is intended to allow users to conveniently and intuitively analyze and grasp the results by performing analysis using a graphical user interface(GUI) and checking the data and inspection results used for the inspection. Sensor inspection is performed using the characteristics of each sensor data, and image data is inspected by applying a morphology geodesic active contour algorithm. The experimental results showed 98% accuracy, and when performing the inspection on the four image data, and sensor data the inspection time was about 1.9 seconds, indicating the performance of software that can be used as a real-time inspector in the welding process.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

PET/CT SUV Ratios in an Anthropomorphic Torso Phantom (의인화몸통팬텀에서 PET/CT SUV 비율)

  • Yeon, Joon-Ho;Hong, Gun-Chul;Kang, Byung-Hyun;Sin, Ye-Ji;Oh, Uk-Jin;Yoon, Hye-Ran;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The standard uptake values (SUVs) strongly depend on positron emission tomographs (PETs) and image reconstruction methods. Various image reconstruction algorithms in GE Discovery MIDR (DMIDR) and Discovery Ste (DSte) installed at Department of Nuclear Medicine, Seoul Samsung Medical Center were applied to measure the SUVs in an anthropomorphic torso phantom. The measured SUVs in the heart, liver, and background were compared to the actual SUVs. Applied image reconstruction algorithms were VPFX-S (TOF+PSF), QCFX-S-350 (Q.Clear+TOF+PSF), QCFX-S-50, VPHD-S (OSEM+PSF) for DMIDR, and VUE Point (OSEM) and FORE-FBP for DSte. To reduce the radiation exposure to radiation technologists, only the small amount of radiation source 18F-FDG was mixed with the distilled water: 2.28 MBq in the 52.5 ml heart, 20.3 MBq in the 1,290 ml liver and 45.7 MBq for the 9,590 ml in the background region. SUV values in the heart with the algorithms of VPFX-S, QCFX-S-350, QCFX-S-50, VPHD-S, VUE Point, and FOR-FBP were 27.1, 28.0, 27.1, 26.5, 8.0, and 7.4 with the expected SUV of 5.9, and in the background 4.2, 4.1, 4.2, 4.1, 1.1, and 1.2 with the expected SUV of 0.8, respectively. Although the SUVs in each region were different for the six reconstruction algorithms in two PET/CTs, the SUV ratios between heart and background were found to be relatively consistent; 6.5, 6.8, 6.5, 6.5, 7.3, and 6.2 for the six reconstruction algorithms with the expected ratio of 7.8, respectively. Mean SNRs (Signal to Noise Ratios) in the heart were 8.3, 12.8, 8.3, 8.4, 17.2, and 16.6, respectively. In conclusion, the performance of PETs may be checked by using with the SUV ratios between two regions and a relatively small amount of radioactivity.

The Evaluation of Reconstructed Images in 3D OSEM According to Iteration and Subset Number (3D OSEM 재구성 법에서 반복연산(Iteration) 횟수와 부분집합(Subset) 개수 변경에 따른 영상의 질 평가)

  • Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.

  • PDF