• Title/Summary/Keyword: Mixed SAM

Search Result 202, Processing Time 0.034 seconds

Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading (혼합모드 하중에서의 STS304의 피로균열 전과거동)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF

Evaluation of Fracture Toughness by Energy Release Rate for Interface Crack in Adhesively Bonded Joints (에너지 방출률에 의한 접착이음의 계면균열에 대한 파괴인성의 평가)

  • Jeong, Nam-Yong;Lee, Myeong-Dae;Gang, Sam-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2174-2183
    • /
    • 2000
  • In this paper, the evaluation method of interfacial fracture toughness to apply the fracture toughness was investigated in adhesively bonded joints of AI/Ced./A1. Four types of adhesively bonded double-cantilever beam(DCB) joints with the interface crack were prepared for the test of interfacial fracture toughness. The experiments to measure the interfacial fracture toughness were performed under the various mixed-mode conditions. The critical energy release rate, Gc, was obtained by the experimental measurement of compliances. From the experimental results, the interfacial fracture toughness for the mixed-mode specimens is well characterized by the energy release rate, and the method of strength evaluation by the interfacial fracture toughness was discussed in adhesively bonded joints.

Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition (혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성)

  • Chae Young-Hun;Kim Seock-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

The Mixed Mode fatigue Crack Propagation Behavior with the Variation of Stress Ratio (응력비 변화에 따른 혼합모드 피로균열 전파거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2287-2296
    • /
    • 2002
  • Most cracks in the structure occur under mixed mode loading and those fatigue crack propagation behavior heavily depends on the stress ratio. So, it is necessary to study the fatigue behavior under mixed mode loading as the stress ratio changes. In this paper, the fatigue crack propagation behavior was respectively investigated at stress ratio 0.1, 0.3, 0.5, 0.7 and we changed the loading application angle into 0$^{\circ}$, 30$^{\circ}$, 60$^{\circ}$ to apply various loading mode. The mode I and II stress intensity factor of CTS specimen used in this study was calculated by the displacement extrapolation method using FEM (ABAQUS). Using both the experiment and FEM analysis, we have concluded the relationship between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress ratio and loading mode condition, we have concluded the dominant factors of the crack propagation rate at each case.

Mixed Mode Fatigue Crack Propagation Behavior due to The Variation of Stress Ratio (응력비의 변화에 따른 혼합 모드 피로 균열 전파 거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.286-291
    • /
    • 2001
  • Most cracks in the structure occur under mixed mode loadings and those propagation depend on the stress ratio very much. So, it is necessary to study the fatigue behavior under mixed mode loading as stress ratio changes. In this paper, fatigue crack propagation behavior was investigated respectively at stress ratio 0.1, 0.3, 0.5, 0.7 and we change loading application angle to $0^{\circ},\;30^{\circ},\;60^{\circ}$ to apply various loading. mode. The mode I and II stress intensity factors of CTS specimen used in this study were calculated by displacement extrapolation method using FEM(ABAQUS). Using both the study through the experiment and the theoretical study through FEM analysis, we studied the relation between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress condition and given loading mode condition, we studied what the dominant factors of the crack propagation rate were at each case.

  • PDF

An Analytic Study on the Creep Properties for Fibers Mixed of High Strength Concrete (고강도 콘크리트의 섬유 혼입에 따른 크리프 특성 분석에 관한 연구)

  • Park, Hee-Gon;Kwon, Hae-Won;Lee, Bo-Hyeong;Bae, Yeoun-Ki;Lee, Jae-Sam;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.81-85
    • /
    • 2009
  • In the recent years, the high strength concrete has increasingly been used according to extending market of tall buildings. However, Ministry of Land, transport and Maritime Affairs was established by law with an alternative plan after June 2008 because of the weakness of high strength concrete accompanied spalling phenomena in fire. The mix design of concrete has to properly meet standards which are the spalling resistance of concrete and limited temperature of steel reinforcement. The fire proof concrete mixed fiber has widely been used to meet spalling safety on the many construction sites, the most researches about the fire proof concrete mixed fiber had being carried out focused on fire resistance, compressive strength and cast in place of concrete. But the most important thing is column shortening used the fire proof concrete within the vertical members. In this paper, the fire proof concrete filled spalling safety standards was experimented by required material when the column shortening is revised between normal concrete and fire proof concrete mixed fiber and then the results have done a comparative analysis. Also, The paper aimed to indicate a basic data for revision of column shortening of fire proof concrete.

  • PDF

Utilization of Saline Solutions in the Modification of Lignocellulose from Champaca Wood

  • Sangian, Hanny F.;Sehe, Muhammad Rifai;Tamuntuan, Gerald H.;Zulnazri, Zulnazri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.368-379
    • /
    • 2018
  • Objective of this work is to study the effects of a saline solution used to pretreat lignocellulosic material derived from champak timber. The native lignocellulosic solids, in powder form, were mixed with saline water solutions of three different concentrations and maintained for 2 weeks without stirring. The treated solids were washed, recovered, and then dried under sunlight. The substrates were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The crystallinity (CrI), lateral order index (LOI), total crystallinity index (TCI), and surface morphologies of all the samples were determined. The treated biomass structures were compared with controls. The data show that the structures of all the treated substrates changed, as indicated by CrI. CrI of the treated substrates decreased significantly compared with that of the original wood, as did LOI and TCI quantities, whereas the HBI parameter increased. The results indicate that the saline water pretreatment modified the wood samples.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part I

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that HF treatment is not desirable for the synthesis of a high quality PEDOT thin film via vapor phase polymerization method. Rather, sole treatment with plasma noticeably improved the quality of APS-SAM on glass surface. As a result, a highly dense and smooth PEDOT thin film was grown on uniform oxidant film-coated APS monolayer surface.

Friction Properties between Fiber-Mixed Soil and Geogrid (섬유혼합토와 지오그리드 사이의 마찰 특성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;An, Ju-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.27-37
    • /
    • 2003
  • The factors affecting shear strength and friction characteristics of the fiber-mixed soil can be classified into engineering properties of soil; particle-size, distribution, and particle shape, physical and mechanical properties of fiber; shape, length, diameter, tensile strength, elastic modulus, friction coefficient, and mixed ratio and external factors; confined stress and compaction condition. In this study, a series of shear friction tests and pull-out tests were performed to evaluate the friction properties of fiber-mixed soil according to soil type, fiber type, fiber mixed ratio and compaction degree. The materials and test conditions used in this study are as follows. Soils: SM and ML; mixing fibers: three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm); reinforcement: geogrid; mixing ratio: 0.2% and 0.3%; degree of compaction : 85% and 95%.

  • PDF

Strength Characteristics of the Anti-washout Grout Mixed with Coarse Fill Materials (점성개질제를 이용한 수중 불분리성 그라우트재의 수중 속채움 보강 특성 분석)

  • Kim, Uk-Gie;Cho, Sam-Deok;Park, Bong-Geun;Kim, Juhyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2013
  • This study introduces strength characteristics of the anti-washout grouting material using viscous modifiers and its characteristics mixed with coarse materials. Especially, this study focused on the strength characteristics of the grouts mixed with sea water. It is found that the anti-washout grout mixed with sea water has enough strength and good resistance to segregation just like that with fresh water. Also, a small scale test was performed to evaluate the solidification characteristic of the anti-washout grout mixed with coarse fill materials. It is also found that the strength of anti-washout grout mixed with coarse fill materials is greater and better segregation resistance than those of conventional grout with fill materials.