• 제목/요약/키워드: Mixed Mode fracture

검색결과 165건 처리시간 0.031초

십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰 (Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • 제3권2호
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF

Characterization of Fracture Behavior in Repaired Skin/Stiffener Structure with an Inclined Central Crack

  • Chung, Ki-Hyun;Yang, Won-Ho;Heo, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.599-608
    • /
    • 2002
  • Finite element analysis for the stress intensity factor (SIF) at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels is developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior at the inclined crack. In order to investigate the crack growth direction, maximum tangential stress (MTS) criterion are used. Also, this paper is to study the performance of the effective bonded composite patch repair of a plate containing an inclined central through-crack. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stress intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. We report the results of finite element analysis on the stiffener locations and crack slant angles and discuss them in this paper. The research on cracked structure subjected to mixed mode loading is accomplished and concludes that more work using a different approaches is necessary. The authors hope the present study will aid those who are responsible for the repair of damaged aircraft structures and also provide general repair guidelines.

레일강의 균열발생·천이 및 피로균열진전거동 (Behavior of the Crack Initiation, Transition and Fatigue Crack Growth of Rail Steel)

  • 이종선;강기원;최린;김정규
    • 한국강구조학회 논문집
    • /
    • 제11권1호통권38호
    • /
    • pp.33-42
    • /
    • 1999
  • 궤도용 차량의 안전성 확보를 위한 연구의 일환으로서 레일강의 균열 발생 조건과 모재와 용접부에 대한 정적파괴거동 및 단일모드 하중하의 피로균열진전거동을 검토하였다. 레일에서 횡방향 균열의 원점은 표면하층균열이며 이는 최대전단응력에 의해 발생하였다. 또한 표면하층균열의 크기가 증가함에 따라 균열의 진전은 전단모드에서 혼합모드로 천이될 가능성이 증가하였다. 용접부의 평면변형률 파괴인성은 조직의 조대화와 경도의 상승으로 인하여 모재에 비하여 약 10% 저하하였다. 용접부의 제 2단계 영역의 피로 균열진전속도는 낮은 ${\Delta}K$ 영역에서 모재에 비하여 저하하였으나 높은 ${\Delta}K$영역에서는 이의 차이가 소멸되었으며 이러한 경향은 R=0.1의 낮은 응력비에서 현저하였다. 이는 용접부의 미시조직이 모재에 비하여 성장하였기 때문이라고 판단된다.

  • PDF

리드프레임/EMC 계면의 파괴 인성치 (Fracture Toughness of Leadframe/EMC Interface)

  • 이호영;유진
    • 한국표면공학회지
    • /
    • 제32권6호
    • /
    • pp.647-657
    • /
    • 1999
  • Due to the inherently poor adhesion strength of Cu-based leadframe/EMC (Epoxy Molding Compound) interface, popcorn cracking of thin plastic packages frequently occurs during the solder reflow process. In the present work, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, black-oxide layer was formed on the leadframe surface by chemical oxidation of leadframe, and then oxidized leadframe sheets were molded with EMC and machined to form SDCB (Sandwiched Double-Cantilever Beam) and SBN (Sandwiched Brazil-Nut) specimens. SDCB and SBN specimens were designed to measure the adhesion strength between leadframe and EMC in terms of critical energy-release rate under quasi-Mode I ($G_{IC}$ ) and mixed Mode loading ($G_{C}$ /) conditions, respectively. Results showed that black-oxide treatment of Cu-based leadframe initially introduced pebble-like X$C_2$O crystals with smooth facets on its surface, and after the full growth of $Cu_2$O layer, acicular CuO crystals were formed atop of the $Cu_2$O layer. According to the result of SDCB test, $Cu_2$O crystals on the leadframe surface did not increase ($G_{IC}$), however, acicular CuO crystals on the $Cu_2$O layer enhanced $G_{IC}$ considerably. The main reason for the adhesion improvement seems to be associated with the adhesion of CuO to EMC by mechanical interlocking mechanism. On the other hand, as the Mode II component increased, $G_{C}$ was increased, and when the phase angle was -34$^{\circ}$, crack Kinking into EMC was occured.d.

  • PDF

Stochastic fracture behavior analysis of infinite plates with a separate crack and a hole under tensile loading

  • Khubi Lal Khatri;Kanif Markad
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.99-117
    • /
    • 2023
  • The crack under the influence of the higher intensities of the stresses grows and the structure gets collapsed with the time when the crack length reaches to critical value. Therefore, the fracture behavior of a structure in terms of stress intensity factors (SIF) becomes important to determine the remaining fracture strength and capacity of material and structure for avoiding catastrophic failure, increasing safety and further improvement in the design. The robustness of the method has been demonstrated by comparing the numerical results with analytical and experimental results of some problems. XFEM is used to model cracks and holes in structures and predict their strength and reliability under service conditions. Further, XFEM is extended with a stochastic method for predicting the sensitivity in terms of output COVs and fracture strength in terms of mean values of stress intensity factors (SIFs) of a structure with discontinuities (cracks and holes) under tensile loading condition with input individual and combined randomness in different system parameters. In stochastic technique, the second order perturbation technique (SOPT) has been used for the predicting the fracture behavior of the structures. The stochastic/perturbation technique is also known as Taylor series expansion method and it provides the reliable results if the input randomness is less than twenty percentage. From the present numerical analysis it is observed that, the crack tip near to the hole is under the influence of the stress concentration and the variational effect of the input random parameters on the crack tip in terms of the SIFs are lesser so the COVs are the less sensitive. The COVs of mixed mode SIFs are the most sensitive for the crack angles (α=45° to 90°) for all the values of c1 and d1. The plate with the shorter distance between hole and crack is the most sensitive with all the crack angles but the crack tip which is much nearer to the hole has the highest sensitivity.

알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성 (Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels)

  • 김상규;김재윤;윤태희;황병철
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

Sn-3.0wt.%Ag-0.5wt.%Cu 솔더 볼 접합부의 고속전단 특성 (Characteristics of the High Speed Shear Test for Sn-3.0wt.%Ag-0.5wt.%Cu Solder Ball Joints)

  • 이영곤;이희열;문정탁;박재현;한신식;정재필
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.580-585
    • /
    • 2009
  • The effects of shear speed and tip height on the high speed shear test of Sn-3.0wt.%Ag-0.5wt.%Cu ball joints were investigated. Solder balls of $450{\mu}m$ in diameter were reflowed at $245^{\circ}C$ on a FR4 PCB (Printed Circuit Board) in order to obtain a sample for the high-speed shear test. The UBM was comprised of Cu/Ni/Au, and the shear speed and tip height varied from 0.5 to 3.0 m/s, and from 10 to $135{\mu}m$, respectively. According to the experimental results, faster shear speed enhanced the shear strength of the solder joints, regardless of the tip height. The fraction of ductile (solder) fracture decreased when the shearing speed was raised from 0.5 to 3.0 m/s. With an increasing tip height from 10 to 50 and $135{\mu}m$, the fracture mode changed from pad lift to mixed (ductile and brittle) and ductile fracture, respectively, while the shearing energy also increased in the same order. The shear energy had a proportional relationship with the fraction of the solder fracture.

복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석 (Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints)

  • 김원석;신금철;이정주
    • Composites Research
    • /
    • 제19권4호
    • /
    • pp.15-22
    • /
    • 2006
  • 구조물 설계에 복합재료-금속 접착제 결합 조인트의 개발 및 사용을 제한하는 가장 큰 요인은 접착 조인트의 하중지지 능력 예측을 위한 접착 계면의 강도 평가 방법의 부재이다. 본 연구에서는 복합재료-탄소강의 접착 강도를 계면 모서리에서의 응력강도계수와 파괴 인성 값으로 평가하였다. 구체적으로 동시 경화 성형법으로 제작된 복합재료-탄소강 양면 겹치기 접착조인트의 하중지지 능력을 파괴 역학적 분석 방법을 통하여 결정하였다. 이종재료 계면 모서리 첨단의 응력 특이성과 그 지수를 제시하고 최종적으로 응력강도계수와 실험을 통한 계면의 파괴인성 값을 획득하였다. 서로 다른 접합 길이를 갖는 조인트의 하중지지 능력 비교를 통하여 양면 겹치기 접착 조인트의 파괴 인성치와 혼합 모드에서의 균열 진전 기준을 $K_1-K_{11}$ 평면 내에 도시하였다.

점용접시편의 과부하해석 및 유효 J-적분에 의한 피로수명예측 (Overload Analysis and Fatigue Life Prediction Using an Effective J-Integral of Spot Welded Specimens)

  • 이형일;최진용
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.567-580
    • /
    • 2000
  • This paper proposes an integrated approach, which is independent of specimen geometry and loading type, for predicting the fatigue life of spot welded specimens. We first establish finite element models reflecting the actual specimen behaviors observed on the experimental load-deflection curves of 4 types of single spot welded specimens. Using finite element models elaborately established, we then evaluate fracture parameter J-integral to describe the effects of specimen geometry and loading type on the fatigue life in a comprehensive manner. It is confirmed, however, that J-integral concept alone is insufficient to clearly explain the generalized relationship between load and fatigue life of spot welded specimens. On this ground, we introduce another effective parameter $J_e$ composed of $J_I$, $J_{II}$, $J_{III}$, which has been demonstrated here to more sharply define the relationship between load and fatigue life of 4 types of spot welded specimens. The crack surface displacement method is adopted for decomposition of J, and the mechanism of the mixed mode fracture is also discussed in detail as a motivation of using $J_e$.

Laser-FSW Hybrid 접합기술을 적용한 이종재료(Al6061-T6/SS400) 접합부의 접합성 및 기계적 특성에 관한 연구 (A Study on the Weldability and Mechanical Characteristics of Dissimilar Materials Butt Joints by Laser Assisted Friction Stir Welding)

  • 방한서;방희선;김현수;김준형;오익현;노찬승
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.70-75
    • /
    • 2010
  • This study intends to investigate the weldability and mechanical characteristics of butt weld joints by LAFSW for dissimilar materials (Al6061-T6 and SS400). At optimum welding conditions, the tensile strength of dissimilar materials joints made by FSW is found to be lower than that of LAFSW. Due to the increase in plastic flow and formation of finer recrystallized grains at the TMAZ and SZ by laser preheating in LAFSW, the hardness in LAFSW appeared to be higher than that of FSW. Compared with FSW, finer grain size is observed and elongated grains in parent metal are deformed in the same direction around the nugget zone in TMAZ of Al6061-T6 by LAFSW. Whereas, at weld nugget zone, coarse grain size is appeared in LAFSW compared to FSW, which is owing to more plastic flow due to laser preheating effect. In dissimilar materials joints by LAFSW, ductile mode of fracture is found to occur at Al6061 side with fewer brittle particles. Mixed mode of cleavage area and ductile fracture is observed at SS400 side.