• Title/Summary/Keyword: Mixed Mode Load

Search Result 82, Processing Time 0.028 seconds

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Prediction of Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하에서 피로균열 전파거동의 예측)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.359-364
    • /
    • 2004
  • In this study, experiments were tried on the mixed-mode I+II single overloading model which changes the loading mode of overload and fatigue load. Aspects of deformation field in front of the crack which is formed by mixed-mode I+II single overloading were experimentally studied. Then the shape and size of mixed-mode plastic zone were approximately calculated. The propagation behavior of fatigue crack was examined under the test conditions combined by changing the loading mode. The behavior of fatigue cracks were greatly affected by shapes of plastic deformation field and applying mode of fatigue load. Accuracy of prediction and evaluation for fatigue life may be improved by considering all aspects of deformation and behavior of fatigue cracks.

  • PDF

The Effect of Behavior Fatigue Crack Propagation on 2-Axle Load Frequency (2축 하중주파수가 피로균열진전거동에 미치는 영향)

  • Kim, Sang-Hee;Li, Jing-Hua;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • The stress state acting on mechanical parts and structures is generally mixed stress. This complex stress state, which is subject to changes in the environment, will produce many. Cars running on roads with different road conditions will subject the automotive parts to combined stress state. In the x direction and the y direction, a different amplitude and frequency of the fatigue load can be present. However, the load amplitude for Mode I and Mode II in a 2-axis fatigue test is limited to a constant ratio; the load frequency is always the same for any mode. In this paper, it is verified how the variation of the load frequency for mode II affects the behavior of fatigue crack propagation under mixed mode.

Crack Growth Behavior by Fatigue Load under Mixed Mode(I+II) (혼합모드(I+II)에서 피로 하중에 의한 균열진전 거동)

  • Gong, B.C.;Choi, S.D.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.276-282
    • /
    • 2012
  • This study looked for Mode status of each for fatigue crack growth behavior about the repeat load of mode I and the static load of mode II. The experiment was performed in the state of the repetition frequency of the sine wave 10Hz, the stress ratio 0.1, maximum load 300kg.f, a static load 0, 100, 200, 300kg.f, As the experimental results, in mode of static load, while the load value increases, the crack growth rate is slower as the energy of a crack mixing grows. Mode I and the power mode II get an influence each other in the direction of crack propagation path, but as they eventually get closer to the breaking point of the crack growth, it is dominated by the mode I.

The Mixed Mode Fracture Using Concrete Disk (콘크리트 디스크를 이용한 혼합모드 파괴)

  • 진치섭;김희성;정진호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

Characteristic of Fatigue Crack Behavior on the Mixed-Mode in Aluminum Alloy 5083-O

  • Kim, Gun-Ho;Cho, Kyu-Chun;Lee, Ho-Yeon;Won, Young-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.899-906
    • /
    • 2011
  • Generally, load conditions of machine or structure in fatigue destruction is occurred not under single load conditions but under mixed load conditions. However, the experiment under mixing mode is insufficient because of no having test standard to the behavior of crack under mixing mode and variety of test methods, and many tests are required. In this paper measured crack direction path by created figure capture system when a experiment. Also, we studied by comparison the behavior of crack giving the change of stress ratio and inserting beach mark. Through the test under mixing mode, advancing path of crack is indicated that advancing inclined angle ${\Theta}$ (direction of specimen length) has increased depending on the increase of mixed mode impaction. It is indicated that according to the increase of mixed mode loading condition impaction under mixing mode, advancing speed of crack gets slow. Also, we found that inner crack(cross section of specimen) is progressed more rapidly than outer crack based on data through beach mark.

Strain Energy Release Rate of Carbon/Epoxy Composite Material under Mixed Mode Delamination (혼합모우드 층간분리하에 있는 탄소/에폭시 복합재료의 변형에너지 방출율)

  • Yum, Y.J.;You, H.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.66-74
    • /
    • 1999
  • A modified mixed mode bending test was performed to investigate the mixed mode delamination for carbon/epoxy composite material. Various mixed mode ratios could be produced by changing the applied load position on the loading lever and the bending load position on the specimen. The modified mixed mode bending test was analyzed to obtain strain energy release rates using beam theory, compliance method and finite element method, This results were in good agreement with the experimental result, which confirmed the validity of this test.

  • PDF

Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II) (혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향)

  • Gong, Byeong-Chae;Choi, Myoung-Su;Kwon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

A Study on the Fatigue Test in A5052 Alloy Sheet Under Mixed Mode Loading (혼합모드 하중하의 A5052 합금판재에서의 피로시험에 관한 연구)

  • Gu, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.828-834
    • /
    • 2002
  • In this paper, for the mixed mode fatigue problem, the method of determining testing load was proposed. It is based on the plastic zone size and the limited maximum stress intensity factor by ASTM STANDARD E 647-00. The application method of maximum tangential stress criterion and the stress intensity factor for the finite width specimen was proposed. In the result of applying the method to mixed mode fat gut test for A5052 H34, it obtained the satisfactory experimental results on the stable crack growth.

Fatigue Crack Propagation Behavior under Mixed Mode Loading (혼합모드 하중에서의 피로균열 전파거동)

  • 송삼홍;이정무;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.481-484
    • /
    • 2000
  • Practical structures are subject not only to tension but also to shear and torsional loading. Even under uniaxial loading, when the load is not perpendicular to the crack plane, mixed mode crack can occur. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. In this study, the propagation behavior of the fatigue crack of the STS304 steels under mixed mode loading condition was investigated. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method with experimental results. The fatigue crack propagation under mixed mode was evaluated by the effective stress intensity factor proposed by Tanaka.

  • PDF