• Title/Summary/Keyword: Mixed Loading

Search Result 410, Processing Time 0.022 seconds

A Study on the Kinetics of a Pasked Bed Aerobic Biofilm Rrocess (충전상(充塡床) 호기성(好氣性) 생물막공법(生物膜工法)의 반응속도론(反應速度論)에 관한 연구(研究))

  • Cho, Kwang Myeung;Jeong, Jae Kee;Son, Jong Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.45-53
    • /
    • 1987
  • The purpose of this research was to study the kinetics of a packed bed aerobic biofilm process. Experiments were carried out by feeding an aerated packed bed reactor with a synthetic wastewater. The reactor packed with glass beads as media had a nominal hydraulic detention time of 5 hours. The flow pattern in the reactor was determined by a tracer test using a NaCl solution to be a completely-mixed type. The results of the research showed that the F/M ratio in the reactor was almost constant since the the biomass increased due to the growth of biofilm as the volumetric organic loading increased. It was also proved theoretically and experimentally that packed bed aerobic biofilm process could be analyzed by the kinetics of completely-mixed activated sludge process with sludge recycle.

  • PDF

A Study on Source Mechanisms of Micro-Cracks Induced by Rock Fracture (암석파괴시 발생되는 미세균열의 발생원에 대한 연구)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.59-64
    • /
    • 1996
  • Acoustic Emission(AE) signals are emitted by a sudden release of strain energy associated with material damage. A multi-channels of LeCroy system and piezoelectric pressure transducers are employed for AE measurement to investigate the roles of AE in the propagation of macro cracks as well as the characteris-tics of AE wave in occurrence, amplitude and dominant frequency with changes in macro loading modes. Deduced crack opening volume of micro cracks varied widely and implies that AE events could be caused by crystal dislocations on a small scale and grain boundary movements on a large scale. Amplitude of first arrival AE wave emitted during mode I test was approximately 3 times higher than those from mixed mode test, while the number of AE count in mode I test was only 25% of mixed mode. It may imply that the total energy required for generation of a given fracture surface is similar regardless in change of macroloading modes.

  • PDF

Effect of Graphite Nanofibers Addition on the Electrochemical Behaviors of Platinum Nanoparticles Deposited on Activated Carbons (활성탄소에 담지된 백금나노입자의 전기화학적 거동에 대한 그라파이트 나노섬유 첨가효과)

  • Jo, Wonbin;Oh, Misoon;Kim, Juhyun;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.673-678
    • /
    • 2010
  • In the present study, mixed carbon-supported platinum(Pt) nanoparticles were prepared by a chemical reduction method of Pt precursor solution on two types of carbon materials such as activated carbons(ACs) and graphite nanofibers(GNFs). Average crystalline sizes and loading levels of Pt metal particles could be controlled by changing a content of GNFs. The highest electroactivity for methanol oxidation was obtained by preparing the carbon supports having 15 wt% GNFs. Furthermore, with an increase of GNFs content from 0% to 15%, an electrical conductivity was changed from $10^{-4}S/cm$ to $10^{-1}S/cm$. By an introduction of 10 wt% GNFs additive, the electroactivity of platinum particles was enhanced, but was saturated in the case of 15 wt% GNFs contents. This was related with the fact that the electroactivity change was dependent on the electrical conductivity of mixed carbon supports and Pt particle deposition content or deposition morphology.

Adsorption of Ni(II), Co(II), and Mg(II) from Sulfuric Acid Solution by Diphonix Resin for the Utilization of Laterite Ore (라테라이트광 활용을 위한 황산용액에서 Diphonix 수지의 니켈, 코발트, 마그네슘 흡착)

  • Lee, Man-Seung;Kim, Sang-Bae;Chae, Jong-Gwee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2010
  • It is of importance to separate Ni(II) and Co(II) from Mg(II) in solution which was leached from nickel laterite ore. In order to investigate the possibility of separating Ni(II) and Co(II) from Mg(II), adsorption behavior of the three metals from individual and mixed sulfate solutions was investigated by using Diphonix resin. The concentration of each metal in solution was fixed at 100 ppm and the pH of the sulfuric acid solution was changed from 5 to 7. At ambient temperature, the adsorption behavior of the three metal ions followed Langmuir adsorption isotherm. The loading capacity of Diphonix resin for the three metal ions was obtained from the Langmuir isotherm. Since adsorption behavior of the three metal ions from the mixed solution was similar to each other, it was found to be difficult to separate Ni(II) and Co(II) from Mg(II) by using Diphonix resin.

A Study on Fire Performance of HPC Column with Fiber Cocktail in KS Fire Curve under Loading Condition (표준화재 재하조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 화재거동에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.377-380
    • /
    • 2008
  • The material and mechanical properties in the high temperature area of 40 to 100 MPa high strength concrete structural member was identified based on mixing of fiber cocktail and the structural element fire behavior simulation through the finite element analysis method (ABAQUS) was interpreted. The results are as follows. First, it was interpreted that the test specimen with concrete fiber cocktail mixed was more controllable in the maximum shrinkage than the one with concrete fiber cocktail not mixed the controllable range was about 25% to 55%. This means that shrinkage is controllable through mixing of fiber cocktail for the high strength concrete columns. Second, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance based design of fire resistant construction.

  • PDF

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

A comparison of the implant stability among various implant systems: clinical study

  • Kim, Jae-Min;Kim, Sun-Jong;Han, In-Ho;Shin, Sang-Wan;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • PURPOSE. To determine the change in stability of single-stage, three different design of implant systems in humans utilizing resonance frequency analysis for early healing period(24 weeks), without loading. MATERIAL AND METHODS. Twenty-five patients were included into this study. A total of 45 implants, three different design of implant systems(group A,C,R) were placed in the posterior maxilla or mandible. The specific transducer for each implant system was used. ISQ(implant stability quotient) reading were obtained for each implant at the time of surgery, 3, 6, 8, 10, 12, 24 weeks postoperatively. Data were analyzed for different implant type, bone type, healing time, anatomical locations. RESULTS. For each implant system, a two-factor mixed-model ANOVA demonstrated that a significant effect on ISQ values(group A=0.0022, C=0.017, R=0.0018). For each implant system, in a two-factor mixed model ANOVA, and two-sample t-test, the main effect of jaw position(P > .005) on ISQ values were not significant. CONCLUSIONS. All the implant groups A, C and R, the change patterns of ISQ over time differed by bone type. Implant stability increased greatly between week 0 and week six and showed slow increase between week six and six months(plateau effect).

Inter-bay Re-marshalling Planning in the Automated Container Terminal (자동화 컨테이너 터미널의 베이간 컨테이너 재배치작업 계획)

  • Bae, Jong-Wook;Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.219-226
    • /
    • 2020
  • The container terminal operators established a re-marshalling plan to reduce the loading operation time and the release operation time. Re-marshalling is to rearrange the containers in the container yard to the advantageous position to shorten the working time using the spare time of the automated yard crane. This study assumed the automated container terminal with a perpendicular layout and deals with the inter-bay re-marshalling planning problem in a yard block. The inter-bay re-marshalling plan determines the container to be moved, the location to be relocated, and the sequence of relocation operations. This study presents a mixed integer programming model that simultaneously determines the storage location and the operation sequence while satisfying the spatial availability during the re-marshalling. Numerical experiments are conducted to understand re-marshalling operation using a beam search method.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.