• Title/Summary/Keyword: Mixed Linear and Integer Programming

Search Result 132, Processing Time 0.02 seconds

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects (작업 종속 및 위치기반 선형학습효과를 갖는 2-에이전트 단일기계 스케줄링)

  • Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature, where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms using different methods to generate the initial population and two crossover operations. Computational results show that the proposed algorithms are efficient to obtain near-optimal solutions.

A Study on the Optimization Problem for Offshore Oil Production and Transportation (해양 석유 생산 및 수송 최적화 문제에 관한 연구)

  • Kim, Chang-Soo;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • The offshore oil production requires a huge amount of cost and time accompanied by multiple variables due to the peculiar nature of 'offshore'. And every process concerned is controlled by elaborate series of plans for reducing loss of lives, environment and property. This paper treats an optimization problem for offshore oil production and transportation. We present an offshore production and transportation network to define scope of the problem and construct a mixed integer linear programming model to tackle it. To demonstrate the validity of the optimization model presented, some computational experiments based on hypothetical offshore oil fields and demand markets are carried out by using MS Office Excel solver. The downstream of the offshore production and transportation network ends up with the maritime transportation problem distributing the crude oil produced from offshore fields to demand markets. We used MoDiSS(Model-based DSS in Ship Scheduling) which was built to resolve this maritime transportation problem. The paper concludes with the remark that the results of the study might be meaningfully applicable to the real world problems of offshore oil production and transportation.

Efficient Provisioning for Multicast Virtual Network under Single Regional Failure in Cloud-based Datacenters

  • Liao, Dan;Sun, Gang;Anand, Vishal;Yu, Hongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2325-2349
    • /
    • 2014
  • Network virtualization technology plays a key role in cloud computing, which serves as an effective approach for provisioning a flexible and highly adaptable shared substrate network to satisfy the demands of various applications or services. Recently, the problem of mapping a virtual network (VN) onto a substrate network has been addressed by various algorithms. However, these algorithms are typically efficient for unicast service-oriented virtual networks, and generally not applicable to multicast service-oriented virtual networks (MVNs). Furthermore, the survivable MVN mapping (SMVNM) problem that considers the survivability of MVN has not been studied and is also the focus of this work. In this research, we discuss SMVNM problem under regional failures in the substrate network and propose an efficient algorithm for solving this problem. We first propose a framework and formulate the SMVNM problem with the objective of minimizing mapping cost by using mixed integer linear programming. Then we design an efficient heuristic to solve this problem and introduce several optimizations to achieve the better mapping solutions. We validate and evaluate our framework and algorithms by conducting extensive simulations on different realistic networks under various scenarios, and by comparing with existing approaches. Our simulation experiments and results show that our approach outperforms existing solutions.

Virtual Network Embedding through Security Risk Awareness and Optimization

  • Gong, Shuiqing;Chen, Jing;Huang, Conghui;Zhu, Qingchao;Zhao, Siyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2892-2913
    • /
    • 2016
  • Network virtualization promises to play a dominant role in shaping the future Internet by overcoming the Internet ossification problem. However, due to the injecting of additional virtualization layers into the network architecture, several new security risks are introduced by the network virtualization. Although traditional protection mechanisms can help in virtualized environment, they are not guaranteed to be successful and may incur high security overheads. By performing the virtual network (VN) embedding in a security-aware way, the risks exposed to both the virtual and substrate networks can be minimized, and the additional techniques adopted to enhance the security of the networks can be reduced. Unfortunately, existing embedding algorithms largely ignore the widespread security risks, making their applicability in a realistic environment rather doubtful. In this paper, we attempt to address the security risks by integrating the security factors into the VN embedding. We first abstract the security requirements and the protection mechanisms as numerical concept of security demands and security levels, and the corresponding security constraints are introduced into the VN embedding. Based on the abstraction, we develop three security-risky modes to model various levels of risky conditions in the virtualized environment, aiming at enabling a more flexible VN embedding. Then, we present a mixed integer linear programming formulation for the VN embedding problem in different security-risky modes. Moreover, we design three heuristic embedding algorithms to solve this problem, which are all based on the same proposed node-ranking approach to quantify the embedding potential of each substrate node and adopt the k-shortest path algorithm to map virtual links. Simulation results demonstrate the effectiveness and efficiency of our algorithms.

Genetic Algorithm based Resource Management for Cognitive Mesh Networks with Real-time and Non-real-time Services

  • Shan, Hangguan;Ye, Ziyun;Bi, Yuanguo;Huang, Aiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2774-2796
    • /
    • 2015
  • Quality-of-service (QoS) provisioning for a cognitive mesh network (CMN) with heterogeneous services has become a challenging area of research in recent days. Considering both real-time (RT) and non-real-time (NRT) traffic in a multihop CMN, [1] studied cross-layer resource management, including joint access control, route selection, and resource allocation. Due to the complexity of the formulated resource allocation problems, which are mixed-integer non-linear programming, a low-complexity yet efficient algorithm was proposed there to approximately solve the formulated optimization problems. In contrast, in this work, we present an application of genetic algorithm (GA) to re-address the hard resource allocation problems studied in [1]. Novel initialization, selection, crossover, and mutation operations are designed such that solutions with enough randomness can be generated and converge with as less number of attempts as possible, thus improving the efficiency of the algorithm effectively. Simulation results show the effectiveness of the newly proposed GA-based algorithm. Furthermore, by comparing the performance of the newly proposed algorithm with the one proposed in [1], more insights have been obtained in terms of the tradeoff among QoS provisioning for RT traffic, throughput maximization for NRT traffic, and time complexity of an algorithm for resource allocation in a multihop network such as CMN.

A Study on Economic Analysis Algorithm for Energy Storage System Considering Peak Reduction and a Special Tariff (피크저감과 특례요금제를 고려한 ESS 경제성 분석 알고리즘에 관한 연구)

  • Son, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1278-1285
    • /
    • 2018
  • For saving electricity bill, energy storage system(ESS) is being installed in factories, public building and commercial building with a Time-of-Use(TOU) tariff which consists of demand charge(KRW/kW) and energy charge(KRW/kWh). However, both of peak reduction and ESS special tariff are not considered in an analysis of initial cost payback period(ICPP) on ESS. Since it is difficult to reflect base rate by an amount of uncertain peak demand reduction during mid-peak and on-peak periods in the future days. Therefore, the ICPP on ESS can be increased. Based on this background, this paper presents the advanced analysis method for the ICPP on ESS. In the proposed algorithm, the representative days of monthly electricity consumption pattern for the amount of peak reduction can be found by the k­means clustering algorithm. Moreover, the total expected energy costs of representative days are minimized by optimal daily ESS operation considering both peak reduction and the special tariff through a mixed-integer linear programming(MILP). And then, the amount of peak reduction becomes a value that the sum of the expected energy costs for 12 months is maximum. The annual benefit cost is decided by the amount of annual peak reduction. Two simulation cases are considered in this study, which one only considers the special tariff and another considers both of the special tariff and amount of peak reduction. The ICPP in the proposed method is shortened by 18 months compared to the conventional method.

Advanced Time-Cost Trade-Off Model using Mixed Integer Programming (혼합정수 프로그래밍 기법을 이용한 진보된 Time-Cost Trade-Off Model)

  • Kwon, Obin;Lee, Seunghyun;Son, Jaeho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.53-62
    • /
    • 2015
  • Time-Cost Trade-Off (TCTO) model is an important model in the construction project planning and control area. Two types of Existing TCTO model, continuous and discrete TCTO model, have been developed by researchers. However, Using only one type of model has a limitation to represent a realistic crash scenario of activities in the project. Thus, this paper presents a comprehensive TCTO model that combines a continuous and discrete model. Additional advanced features for non-linear relationship, incentive, and liquidated damage are included in the TCTO model. These features make the proposed model more applicable to the construction project. One CPM network with 6 activities is used to explain the proposed model. The model found an optimal schedule for the example to satisfy all the constraints. The results show that new model can represent more flexible crash scenario in TCTO model.

A Study on an Efficient Double-fleet Operation of the Korean High Speed Rail (한국 고속철도의 효율적 중련편성 운영방법에 대한 연구)

  • Oh, Seog-Moon;Sohn, Moo-Sung;Choi, In-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.742-750
    • /
    • 2007
  • This paper presents a mathematical model for a double-fleet operation in Korean high speed rail (HSR). KORAIL has a plan to launch new HSR units in 2010, which are composed of 10 railcars. The double-fleet operation assigns a single-unit or two-unit fleet to a segment, accommodating demand fluctuation. The proposed model assumes stochastic demand and uses chance-constrained constraints to assure a preset service level. It can be used in the tactical planning stage of the rail management as it includes several real-world conditions, such as the capacities of the infra-structures and operational procedures. In the solution approach, the expected revenue in the objective function is linearized by using expected marginal revenue, and the chance-constrained constraints are linearized by assuming that demands are normally distributed. Subsequently, the model can be solved by a mixed-integer linear programming solver fur small size problems. The test results of the model applied to Friday morning train schedules for one month sample data from KTX operation in 2004 shows that the proposed model could be utilized to determine the effectiveness of double-fleet operation, which could significantly increase the expected profit and seat utilization rates when properly maneuvered.

Optimization of Energy Distribution in District Heating Systems (지역 냉난방 시스템의 에너지 분배 최적화)

  • Park, Tae Chang;Kim, Ui Sik;Kim, Lae-Hyun;Kim, Weon Ho;Kim, Seong Jin;Yeo, Yeong Koo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.119-126
    • /
    • 2009
  • A district energy system plays very important role to fulfill energy demand in regional areas. This paper diagnoses the necessity of the development of an economical operation system for the efficient operation of district energy plants located in Seoul. The effect anticipated from the use of the optimal operation system is also analyzed. Production and consumption of energy are estimated for the district energy plants at Suseo, Bundang, Ilwon and Jungang located near in Seoul, Korea. The problem is formulated as a mixed integer linear programming(MILP) problem where the objective is to minimize the overall cost of the district energy system. From the results of numerical simulations we can see that the energy efficiency is improved due to the application of the optimal operation conditions provided by the proposed model.

Applications of Fuzzy Theory on The Location Decision of Logistics Facilities (퍼지이론을 이용한 물류단지 입지 및 규모결정에 관한 연구)

  • 이승재;정창무;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • In existing models in optimization, the crisp data improve has been used in the objective or constraints to derive the optimal solution, Besides, the subjective environments are eliminated because the complex and uncertain circumstances were regarded as Probable ambiguity, In other words those optimal solutions in the existing models could be the complete satisfactory solutions to the objective functions in the Process of application for industrial engineering methods to minimize risks of decision-making. As a result of those, decision-makers in location Problems couldn't face appropriately with the variation of demand as well as other variables and couldn't Provide the chance of wide selection because of the insufficient information. So under the circumstance. it has been to develop the model for the location and size decision problems of logistics facility in the use of the fuzzy theory in the intention of making the most reasonable decision in the Point of subjective view under ambiguous circumstances, in the foundation of the existing decision-making problems which must satisfy the constraints to optimize the objective function in strictly given conditions in this study. Introducing the Process used in this study after the establishment of a general mixed integer Programming(MIP) model based upon the result of existing studies to decide the location and size simultaneously, a fuzzy mixed integer Programming(FMIP) model has been developed in the use of fuzzy theory. And the general linear Programming software, LINDO 6.01 has been used to simulate, to evaluate the developed model with the examples and to judge of the appropriateness and adaptability of the model(FMIP) in the real world.

  • PDF