• Title/Summary/Keyword: Mixed Gases

Search Result 230, Processing Time 0.027 seconds

Study on the Fire Cause Analysis for Explosives Waste by Thermal Analysis Experiment (열분석 실험에 의한 화약류 폐기물의 화재원인분석에 관한 연구)

  • Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.89-100
    • /
    • 2018
  • when the explosive wastes to be treated as designated wastes are brought into the wastes treatment plant by mistake and lead to an explosion in the wastes disposal process, many people and property damage are involved. Waste should be treated properly. As mentioned in this paper, ignition reac- tion tests of ignitable re-burning of explosives packing material waste (solid butadiene) confirmed that ignition was easily occurred, and that even small ignition sources were easily ignited and burned quickly and explosively. In particular, when explosives are loaded into incineration wastes in large quantities and mixed with organic compound wastes, such as fire and explosion accidents caused by explosives packing materials at waste disposal sites, flammable and oxidative gases are generated due to mutual oxidation and pyrolysis It is confirmed that there is a possibility that ignition sources such as spark ignite and instantaneously lead to explosion. It is hoped that this study will be a small reference for on - site detection in the field of fire, and it is expected that the fire - fighting agency will be recognized as a fire investigation agency and will contribute to the improvement of the credibility.

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

The Role of Geocrete and Soluble Sodium Silicate as a Substitute to Control Leachate Leaking from Landfill Side Wall (Geocrete와 규산소다액을 이용한 매립지 사면 침출수 누출제어)

  • 조재범;현재혁;나진성;김자영
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.47-51
    • /
    • 2001
  • There are two strategies to cope with the troubles in landfill site after closure. The first method is active in a way that the wastes are dug up and the recyclable materials are reutilized, meanwhile the materials not recyclable are incinerated in order to minimize the volume of residues to be disposed of. The second method is rather passive and defensive in a way that the source of contamination, that is, buried wastes are not treated. Instead, the transport of leaking leachate and gases generated from the wastes are intercepted and controlled. In this study, as a passive way of the efficient leachate blocking process, applicabilities of geocrete and soluble sodium silicate as a substitute to control leachate leaking from landfill sidewall were investigated. In case of compression test, the strength of mixture I (Geocrete:Sodium silicate=1:3.9 v/v) and mixture II (Geocrete:Sodium silicate=1:2.5 v/v), even after 7 days' curing was higher than the minimum allowance to tolerate the loading(5 kg/$\textrm{cm}^2$). Soaking in the acid fur 4 days and 7 days respectively, the compressive strength of the specimens reduced seriously. The toxicity of geocrete is not detected through the bioassay test, once it was mixed with sodium silicate and the complex was formed. The hydraulic conductivity of the mixtures even after 7 days' curing was lower than the threshold limit $(1.0\times10_{-7}cm/s)$.

  • PDF

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

Reduction of Sulfur Compounds Produced from Swine Manure, Using Brevundimonas diminuta (Brevundimonas diminuta를 이용한 돈분뇨에서 발생되는 황화합물의 저감)

  • Oh, Min-Hwan;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • Mixed substrate oil cakes are known to emit sulfides, ammonia, and amines. Microorganisms capable of removing odorous gases related to these sulfur compounds were isolated from colonies enriched in vials containing oil cakes and water. Activity tests for hydrogen sulfide and methyl mercaptan reduction were performed to measure the sulfide reduction ratio of the isolates. Control groups were prepared with 0.25 g oil cakes and 10 ml water in a 100-ml vial without inoculation. The experimental groups were prepared similarly, albeit with an inoculum. Hydrogen sulfide removal efficiency of >90% was observed for an isolate, which was identified as Brevundimonas diminuta by 16S rDNA sequence analysis. The sequence was deposited in the Korean Collection for Type Cultures under the accession number KCTC11724BP. B. diminuta could remove up to 200 ppmv standard hydrogen sulfide in 24 hours and demonstrated a maximum hydrogen sulfide and methyl mercaptan removal efficiency of 100% at 453 ppmv and 98 ppmv, respectively, in vial tests. Furthermore, B. diminuta cells in 20% (v/w) medium showed removal efficiency of >85% for sulfur compounds in an odor emission chamber for swine manure.

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

Geochemistry and Isotope Studies of the Shinchon $CO_2$ -rich Waters in the Gyeongsang Province (경상지역 신촌 탄산약수의 지화학적 및 동위원소 특성)

  • 김건영;고용권;배대석;김천수;박맹언
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.71-88
    • /
    • 2001
  • The Geochemica] and isotope studies on the $CO_2$-rich water from the Shinchon area were carried out. The Shinchon $CO_2$-rich water belongs to Ca(Na)-$HCO_3$ type showing very high $P_{CO_{2}}$ ( $10^{-0.35}$ ~ $10^{0.29}$ atm) and TDS (835-3,144 mg/L). The results of geochemical and isotope analysis indicate that $CO_2$ gas is originated from the deep seated source such as mantle or magmatic gases. The $CO_2$-rich water was evolved by interaction with deep-seated granite and major water-rock interaction was dissolution of p]agioclase resulting high Na content of $CO_2$-rich water. Precipitation and dissolution of secondary calcite might be accompanied with the dissolution of plagioclase maintaining Na/Ca ratio. High contents of K and $SO_4$ indicate that the geochemical characteristics of $CO_2$-rich water were partially affected by interaction with upper sedimentary rock during uprising to surface. N03 and tritium contents suggest that the $CO_2$-rich water was mixed with low $CO_2$ groundwater at some locations. The oxygen-hydrogen isotopes show that all water samples were derived from meteoric waters and the $CO_2$-rich water was isotopically re-equilibrated with lighter $CO_2$ gas. Although some carbon isotope data show isotopically heavy values, carbon isotope data indicate that the $CO_2$ gas was possib]y derived by deep source.

  • PDF

Characteristics of the Diamond Thin Film as the SOD Structure

  • Lee, You-Seong;Lee, Kwang-Man;Ko, Jeong-Dae;Baik, Young-Joon;Chi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.58-58
    • /
    • 1999
  • The diamond films which can be applied to SOD (silicon-on-diamond) structure were deposited on Si(100) substrate using CO/H2 CH4/H2 source gases by microwave plasma chemical vapor deposition(MPCVD), and SOD structure have been fabricated by poly-silicon film deposited on the diamond/Si(100) structure y low pressure chemical vapor deposition(LPCVD). The phase of the diamond film, surface morpholog, and diamond/Si(100) interface were confirmed by X-ray diffraction(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM), and Raman spectroscopy. The dielectric constant, leakage current and resistivity as a function of temperature in films are investigated by C-V and I-V characteristics and four-point probe method. The high quality diamond films without amorphous carbon and non-diamond elements were formed on a Si(100), which could be obtained by CO/H2 and CH4/H2 concentration ratio of 15.3% and 1.5%, respectively. The (111) plane of diamond films was preferentially grown on the Si(100) substrate. The grain size of the films deposited by CO/H2 are gradually increased from 26nm to 36 nm as deposition times increased. The well developed cubo-octahedron 100 structure nd triangle shape 111 are mixed together and make smooth and even film surface. The surface roughness of the diamond films deposited by under the condition of CO/H2 and CH4/H2 concentration ratio of 15.3% and 1.5% were 1.86nm and 3.7 nm, respectively, and the diamond/Si(100) interface was uniform resistivity of the films deposited by CO/H2 concentration ratio of 15.3% are obtained 5.3, 1$\times$10-9 A/cm, 1 MV/cm2, and 7.2$\times$106 $\Omega$cm, respectively. In the case of the films deposited by CH4/H2 resistivity are 5.8, 1$\times$10-9 A/cm, 1 MV/cm, and 8.5$\times$106 $\Omega$cm, respectively. In this study, it is known that the diamond films deposited by using CO/H2 gas mixture as a carbon source are better thane these of CH4/H2 one.

  • PDF

Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses (CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.167-175
    • /
    • 2018
  • Natural gas is a clean fuel that discharges almost no air-contaminating substances. This study examined the simultaneous reduction of $CH_4$ and NOx of NGOC/LNT catalysts for CNG buses related to the improvement of the $de-CH_4/NOx$ performance, focusing mainly on identifying the additive catalysts, loading of the washcoat, stirring time, and types of substrates. The 3wt. % Ni-loaded NGOC generally exhibited superior $CH_4$ reduction performance through $CH_4$ conversion, because Ni is an alkaline, toxic oxide, and exerts a reducing effect on $CH_4$. A excessively small loading resulted in insufficient adsorption capacity of harmful gases, whereasa too high loading of washcoat caused clogging of the substrate cells. In addition, with the economic feasibility of catalysts considered, the appropriate amount of catalyst washcoat loading was estimated to be 124g/L. The NOx conversion rate of the NGOC/LNT catalysts stirred from $200^{\circ}C$ to $550^{\circ}C$ for 5 hours showed 10-15% better performance than the NGOC/LNT catalysts mixed for 2 hours over the entire temperature range. The NGOC/LNT catalysts exhibitedapproximately 20% higher $de-CH_4$ performance on the ceramic substrates than on the metal substrates.