• Title/Summary/Keyword: Mix proportion method

Search Result 81, Processing Time 0.024 seconds

The physical properties evaluation and analysis about color revelation of the black-color mortar which applies the Granulated Blast Furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 활용(活用)한 블랙-컬러모르타르 특성(特性) 및 색상발현(色相發現)에 관한 연구(硏究))

  • Kim, Seol-Hwa;Jang, Hong-Seok;So, Seung-Young
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.86-92
    • /
    • 2010
  • In the many kind of construct-material, the concrete which has the high-strength and a durability is sufficient to use with structure-material. but the color of concrete is very monotony, so generally concrete isn't used the out surface. although color concrete is a method of expressing surface, the combination of pigment and cement cause many physical problem such as efflorescence phenomenon, strength degradation and so on. In this study, It attempt to develop the black mortar using the industrial granulated blast furnace slag and to evaluate basic physical properties compare with general color concrete to solve the color concrete problem. The result of experiment showed that the flow dropped mixing of pigment. but flow increased in proportion to the mixing rate in occasion of mortar that mix granulated blast furnace sla and black mortar which was made granulated blast furnace slag has more visible black color than any mortar.

Analysis of Determinants of Electricity Import and Export in Europe Using Spatial Econometrics (공간계량 방법론을 활용한 유럽의 전력수출입 결정요인 분석)

  • Hong, Won Jun;Lee, Jihoon;Noh, Jooman;Cho, Hong Chong
    • Environmental and Resource Economics Review
    • /
    • v.30 no.3
    • /
    • pp.435-469
    • /
    • 2021
  • The main purpose of this study is to identify the determinants of electricity import and export in 26 European Union countries using the Spatial durbin model(SDM). In particular, we would like to mainly explain it based on the amount of power generated by each energy source. Not just the usual way of constructing a weighting matrix based on contiguity, we adopt a weighting method based on the proportion of trade among countries with connected electricity systems. Moreover, the electricity systems of European countries are directly and indirectly connected, which is reflected in the weighting matrix. According to the results, nuclear power has a positive effect on exports and a negative effect on imports, and an increase in wind and solar power has a positive effect on both exports and imports by increasing power system instability. While Korea is unable to trade electricity due to geopolitical conditions, the results of this study are expected to provide implications for energy policies.

Study on the Development of Concrete Public Sign Block (콘크리트 공공 사인 블록 개발에 대한 연구)

  • Lee, Ung-Kyun;Lee, Sung-Chul;Kim, Jong Yoon;Kim, Baek-Joong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.266-274
    • /
    • 2021
  • Purpose: The purpose of this study is to develop a concrete public sign block for floors that can provide pedestrian safety and various information. Method: In order to achieve these research objectives, step-by-step block manufacturing techniques applied in relation to the development of public sign blocks were proposed, and the field applicability of the developed concrete public sign blocks was evaluated. Result: The concrete public sign block for floors developed in this study is expected to be capable of expressing public signs of various shapes and to reduce manufacturing cost. As a result of the usability evaluation for two years, no problems such as cracks, edge dropouts, discoloration, and abrasion were found, so it is judged that sufficient durability was secured. Conclusion: Based on these research results, it is expected that the concrete public sign block will be used as an alternative to secure the weaknesses such as stickers, stone and brass plates that have been used in the existing public sign for floors. It is expected that it can be applied in various fields.

Engineering Properties of Liquefied Stabilized Soil by Contents of Humic Acid (휴믹산 함유량에 따른 유동화 처리토의 공학적 특성)

  • Han, Sang-Jae;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.229-237
    • /
    • 2009
  • A conventional way of backfilling has used sand or in-situ soil. It not only requires substantial amount of time and cost but also makes it particularly difficult to fill the bottom part and small cracks of a pipe. To address the problem with the conventional method of compaction, liquefied stabilized soil was proposed as an alternative because it reuses in-situ soil which can ensure sand supply while adjusting flowability and strength of the soil with design of mix proportion. With an aim to identify the mixing properties of liquefied stabilized soil depending on the organic content of in-situ soil, this study conducted indoor tests of material segregation, flowability, strength, and permeability by changing humic acid content of the soil. The results revealed that material segregation and flowability increased proportionally while strength decreased with the increased amount of humic acid. In the mean time, permeability of liquefied stabilized soil wasn't affected by organic content.

A Study on the Thermal Crack Control of Foundation for Large Turbine (대형 터빈 기초 구조물의 온도균열 제어에 관한 연구)

  • Ha, Ju-Hyung;Cho, Yun-Gu;Lee, Kewn-Chu;Lim, Chang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.287-297
    • /
    • 2014
  • Heat of hydration of mass concrete is one of the most important factors that significantly affect structural quality and construction period. Therefore, appropriate methods to control heat of hydration are essential technologies for mass concrete construction. In this study, probability of thermal cracking was checked by thermal analysis prior to the construction of a turbine foundation in a domestic power plant. Subsequently, changes of concrete mix proportion and an effective curing method were proposed to control heat of hydration of mass concrete structures. Concrete manufactured by slag cement was proposed instead of concrete produced by ordinary Portland cement, and an automated curing method was proposed to improve the curing method using typical moist curing with blanket. The automated curing method maintains the temperature difference between center and surface of concrete below a setting value by temperature monitoring. Concrete with slag cement was used for actual construction. One of two identical turbine foundations was cured by an insulated curing method, and the other was cured by the automated curing method to compare the curing methods. And then, the effects of control of heat of hydration were evaluated based on temperature/strain monitoring and crack investigations.

The Case Study on the Design, Construction, Quality Control of Deep Cement Mixing Method (심층혼합처리공법(DCM)의 설계, 시공 및 품질관리 사례 연구)

  • Kim, Byung-Il;Park, Eon-Sang;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.19-32
    • /
    • 2021
  • In this study, evaluation and consideration of domestic/overseas design, construction, and quality control performed by the authors on the deep cement mixing method were performed, and improvements for the development of the DCM method were suggested in the future. As a result of this study, it was found that the cross-sectional area correction for strength is required during the laboratory test of mix proportion, and caution is required because the extrapolation method may lead to different results from the actual one. Applicable design methods should be selected in consideration of both the improvement ratio and the type of improvement during design, and it was confirmed that the allowable compressive strength to which the safety factor was applied refers to the standard value for stability review and not the design parameters. In the case of the stress concentration ratio, rather than applying a conventional value, it was possible to perform economical design by calculating the experimental and theoretical stress concentration ratio reflecting the design conditions. In the case where pre-boring is expected during construction, if the increased water content is not large compared to the original, there were cases where a major problem did not occur even if the result that did not consider the increase in water content was used. In addition, it was confirmed that when the ratio of the top treatment length to the improved length is high, a small amount of design cement contents per unit length can be injected during construction. In the case of quality control, it was evaluated that D/4~2D/4 for single-axis and D/4 point for multi-axis were optimal for coring of grouting mixtures. As an item for quality control, it is judged that the standard that considers the TCR along with the unconfined compressive strength of grouting mixtures is more suitable for the domestic situation.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

Compressional and Shear Wave Properties of Cement Grout Including Carbon Fiber (탄소섬유를 포함한 시멘트 그라우트의 압축파 및 전단파 특성)

  • Choi, Hyojun;Cho, Wanjei;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2021
  • In Korea, which is mostly mountainous, the proportion of tunnel and underground space development are increasing. Although the ground is reinforced by applying the ground improvement method during underground space development, accidents still occur frequently in Korea. In the grouting method, a representative ground reinforcement method, the effect was judged by comparing the total amount of injection material with the amount of injection material used during the actual grouting construction. However, it is difficult to determine whether the ground reinforcement is properly performed during construction or within the target ground. In order to solve this problem, it is necessary to study a new method for quality control during or after construction by measuring electrical resistivity after performing grouting by mixing carbon fiber, which is a conductive material, and microcement, which is a grout material. In this study, as a basic study, a cement specimen mix ed with 0%, 3%, 5%, 7% of carbon fiber was prepared to evaluate the performance of the grout material mixed with carbon fiber, which is a conductive material. The prepared specimens were wet curing for 3 days, 7 days, and 28 days under 99% humidity, and then compression wave velocity and shear wave velocity were measured. As a result of the compression wave velocity and shear wave velocity measurement, it showed a tendency to increase with the increase in the compounding ratio of carbon fibers and the number of days of age, and it was confirmed that the elastic modulus and shear modulus, which are the stiffness of the material, also increased.

Sensory Evaluation of Quality and Constructability of Cement Mortar for Tile Direct Setting Method Depending on Mix Proportions (타일 떠붙임 시멘트 모르타르의 배합비 변화에 따른 품질 특성 및 시공성에 대한 관능 평가)

  • Hwang, Yin-Seong;Ki, Tae-Kyoung;Han, Dong-Yeop;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2021
  • The aim of the research is providing a fundamental data on quality and constructability of direct tile setting method depending on various cement to sand ratio for tiling dry cement mortar. A large number of tile setting failures reported is related with the cement mortar and its construction for tiling. Because of different materials of tiles, the properties of tiling dry cement mortar, an adhesive for tiling, can influence on quality and constructability of tiling differently. Practically, the easiest way of controlling the properties of the tiling dry cement mortar is to control the proportion of cement and sand. Hence, in this research, sand to cement ratio (S/C) was controlled. Since there is no standarized method on evaluating performance of dry cement mortar for tiling, a several sensory evaluation methods were suggested and executed. According to the experiments conducted in this research, the adhesive performance of cement mortar for tiles can be different depending on the sides such as tile and substrate. Additionally, depending on S/C, finishability, initial adhesive performance, and tile shifting resistance can be changed for ceramic tile. Therefore, under the conditions of this research, about 5 of S/C can be recommended for appropriate performace of tiling dry cement mortar.

Estimation of Willingness-To-Pay for Extensive Implementation of Congestion Pricing (혼잡통행료제도 확대시행에 따른 지불의사액 추정)

  • Kim, Gun-Young;Han, Sang-Yong;Kang, Kyung-Woo;Kim, Tae-Seung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.7-14
    • /
    • 2005
  • Traffic congestion causes enormous social costs as well as loss of travel time and waste of energy. Though the Seoul metropolitan government implemented various forms of transportation policies such as urban road pricing and public transportation reform, traffic volume which across the Seoul metropolitan borders have greatly increased because of housing land development in suburban area. The purpose of this study is to estimate individual's willingness-to-pay(WTP) for extensive implementation of congestion pricing through policy-mix with bus rapid transit(BRT) system. So the field survey interviews carried out. The empirical analysis was done with priority given to the following two topics; derivation of individual WTP and prior evaluation of policy effect from the equity aspect. To estimate individual WTP, we adopted contingent valuation method (CVM). The former is to estimate individual WTP for respondent's maintaining his/her transit pattern when he/she is faced with congestion pricing by using compensating variation(CV) concept. And, the latter aims at evaluating policy effect from the equity aspect by calculating the Proportion of WTP to average income using WTP in income bracket for policy scenarios.