• Title/Summary/Keyword: Mix characteristics

Search Result 728, Processing Time 0.025 seconds

A Study of Optimal Fuel-Mix Considering Power Generation Operation (발전기 출력특성을 고려한 최적전원구성 연구)

  • Jung, Young-Beom;Kim, Kil-Sin;Park, Chang-Ho;Yoon, Yong-Beom
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.28-37
    • /
    • 2011
  • Though Korea has introduced CBP(Cost Based pool) power trading system since 2001, long-term Generation system planning has been executed by government for Cost minimization every 2 years. Until currently the model which is used for Generation system planning and best-mix only considers cost minimization and total yearly or quarterly electricity demand every year. In a view point of one day power supply operation, technical characteristics, like the ramp up/down rate of total generation system, minimum up/down time and GFRQ(Governor Free Response Quantity), are very important. this paper analyzes Optimal Fuel-Mix for 2022 Korea generation system satisfying these constraints of each fuel type and considering pump storage plants, construction cost and $CO_2$ emission charge Using MILP(Mixed Integer Linear Programming) method. Also the sensitivity analysis which follows in future power industry environmental change accomplished.

A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean (수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구)

  • 김명식;윤재범;박세인
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

Development of Lightweight Foamed Concrete Using Polymer Foam Agent (고분자 기포제를 이용한 경량 기포 콘크리트의 개발(I))

  • 변근주;송하원;박상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.165-172
    • /
    • 1997
  • Lightweight foamed concrete is a concrete which is lighter than conventional concree by mixing ptetoamed foam in cement slurry. The objectives of this study are to develop optimal prefoarneti lightweight foamed concrete with high lightness. high flowability and enough strength fol special use of structural application by using the polymer foam agent. By mixing the admixtures such as silica-fume and fly-ash and the industrial by-product such as styrofoam for the purpose of practical use of industrial waste, lightweight foamed concrete shich has better lightness. flowability and strength than the conventional prefoamed lightweight foamed concrete is developed. This paper presents extensive data on characteristics of compressive strength and flowability of the concrete manufactured with the different factors in mix design and also presents optimum mix proportion.

Evaluation of Field Application and Laboratory Performance of Warm-Mix Asphalt According to the Dosage Rate of Additive (중온화 첨가제 첨가비율에 따른 현장 적용성 평가 및 실내 역학적 거동 특성 연구)

  • Yang, Sunglin;Baek, Cheolmin;Hwang, Sungdo;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.117-125
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate of field application and laboratory performance of warm-mix asphalt (WMA) according to the dosage rate of organic-based WMA additive. METHODS: Three asphalt mixtures, i.e., hot mix asphalt (HMA), WMA with the dosage rate of 1.5%, WMA with the dosage rate of 1.0%, were sampled from the asphalt plant when the field trial project were constructed. With these mixtures, the laboratory testings were performed to evaluate the linear viscoelastic characteristics and the resistance to moisture, rutting and fatigue damage. RESULTS : From the laboratory test results, it was found that the WMA with the reduced dosage rate of additive would be comparable to HMA and WMA with the original dosage rate in terms of the dynamic modulus, tensile strength ratio, rutting resistance. However, the fatigue reisistance of WMA with the reduced dosage rate was slightly worse but it should be noted that the fatigue performance is necessarily predicted by combining the material properties and pavement structure. CONCLUSIONS: Through the field construction and laboratory testings, the dosage rate of organic-based WMA additive could be reduced from 1.5% to 1.0% without the significant decrease of compactability and laboratory performance. The long-term performance of the constructed pavement will be periodically monitored to support the findings from this study.

Experimental Study for the Development of Vibration-Controlled Concrete (I) (진동제어 콘크리트 개발에 관한 실험적 연구(I))

  • 정영수;이대형;최우성
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.123-133
    • /
    • 1996
  • Recently, the construction of infrastructures has been booming and accelerating to keep up with rapid economic growth. Construction activities and operation of transportation facilities cause unfavorable effects such as civil petitions associated with vibration-induced damages or nuisances. Accordingly, the objective of this study is to develop vibration-controlled concrete using various vibration-controlled mixtures, and also to recycle obsolete materials in part. As the first step to achieve this research, preliminary mix designs have been carried out to obtain an appropriate mix proportion above 200kg/$\textrm{cm}^2$ in uniaxial compressive strength. Test specimen based on the mix proportion selected have been actuated by the impact hammer to investigate their dynamic characteristics. Vibration-controlled mixtures are foam, latex, rubber powder and plastic resin, which have been determined to reduce a vibration by and large. KS F2437 and travel time method have been used to figure out 1st natural frequency and dynamic elastic moduli. Damping ratios have been computed by adopting the polynomial curvefitting method and the geometric analysis method on the frequency response spectrum curve. of which results have been compared and analyzed hereon.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

Theoretical and Numerical Study on Scavenge Characteristics from a prechamber for use in an engine (엔진 예혼합실의 소기 특성에 대한 이론 및 수치해석적 연구)

  • Heo, Hyeung-Seok;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1401-1406
    • /
    • 2004
  • In this paper, we present the theoretical and numerical results of scavenge characteristics in a small prechamber of an HCCI(Homogeneous Charge Compression Ignition) engine. Two theoretical models are proposed in prediction of the scavenge time and the efficiency ; one is the non-mixing models in which it is assumed that the input gas($CH_{4}$) and the existing gas(air) do not mix with each other, and the other is the fully-mixed model in which the two gases are assumed to mix completely before ejecting to the ambient air. Focus is also given to the effect on the scavenge performance of the size of the chamber oulet.

  • PDF

Strength Characteristics of No-Fine Concrete Containing Recycled Aggregates (재생골재를 함유한 무잔골재 콘크리트의 강도특성)

  • 김태근;이광명;김낙경;고용일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.1-6
    • /
    • 1998
  • Recently, as to destruction and renovation of aged building, waste concretes have been reclaimed near foreshore and filled up underground. Recycling demolished concrete as aggregate helps to settle economic and environmental problems of obtaining superior aggregates from natural sources and to dispose waste concretes. An experimental study was carried out to investigate the strength characteristics of no-fine concrete containing recycled aggregates. The cement-aggregate weight ratios of 1: 5, 1: 6, 1: 7 and water-cement ratios of 30, 35, 40, 45% were chosen for the mix design of no-fine concretes. The compressive and splitting tensile strength at 7 and 28 days were measured for 12 different mixes. On the basis of test results, the optimum mix proportion of no-fine concrete containing recycled aggregates was determined and applied to the production of retaining wall block.

  • PDF

Statistical Evaluation of Mix proportion Factor of Antiwashout Underwater Concrete (통계적 분석에 의한 수중불분리성콘크리트 배합인자의 특성)

  • 원종필;임경하;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.66-76
    • /
    • 2001
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aims of this research is statistically evaluated to mix proportion factor of antiwashout underwater concrete. Experiment was performed to analyze the influence variables(cement, water, and antiwashout admixture) on fundamental characteristics of antiwashout underwater concrete. The influence variables can be considered for use in a wide range of underwater work where their have statistically significant effect on the characteristics(fluidity, filling ability, resistance to washout, etc.) of antiwashout underwater concrete.

  • PDF

A Study on the Recipe for Yackwa by the mixing ratio of flour (밀가루의 배합비율에 따른 약과 조리에 관한 연구)

  • 홍진숙
    • Korean journal of food and cookery science
    • /
    • v.14 no.3
    • /
    • pp.241-249
    • /
    • 1998
  • The purpose of this study was to develop a recipe for high quality Yackwa (fried cake made of wheat flour) by adjusting the mixing ratio of flours, frying temperature and time. Yackwas were prepared by using 3 kinds of flour mix (3:7, 4:6, and 2:8 of weak to medium ratio), fried at various temperatures and times, and evaluated by mechanical characteristics and sensory evaluation. It was found that Yackwa prepared with 3:7 mixing ratio of flour and fried at 160$^{\circ}C$ for 9 min was most preferred. Yackwas with the same flour mixing ratio and fried at 150-155$^{\circ}C$ for 12∼16 min were also within the range of acceptance. The characteristics of desirable Yackwa were suggested to be soft, crispy, and to have little taste of oil.

  • PDF