• Title/Summary/Keyword: Mix Proportion

Search Result 355, Processing Time 0.026 seconds

Optimum Mixture Proportion of Self-Compacting Concrete Considering Packing Factor of Aggregate and Fine Aggregate Volume Ratio (골재 채움율과 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합)

  • 최연왕;정문영;정지승;문대중;안성일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.549-554
    • /
    • 2002
  • In Powder System, SCC demands high dosage of superplasticizer and a lage amout of powder for suitable fluidity and viscosity. Okamura's method of most representative mixing design method in SCC of Powder-System is unfavorable economically because of using a large amount of powder. In addition, many ready-mixed concrete plants do not use his mix design method and procedure due to complexity for practical application. Therefore, Nan Su proposed more simple mix design method than Okamura's. It had an advantage in simplicity in practical application and required a smaller amount of powders compared with Okamura's method. This paper proposed an optimal mixture proportion of SCC with consideration of Nan Su's method. The new and modified mix design method required a smaller amount of powder than that of Nan Su's. To check the properties of SCC, considered with the requirements specified by the Japanese Society of Civil Engineering.(JSCE)

  • PDF

A Study on the Properties of Self-Compacting Concrete Using Ground Calcium Carbonate (중탄산칼슘을 이용한 자기충전형 콘크리트의 특성에 관한 연구)

  • 최연왕;정문영;임흥빈;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • This study examines self-compacting of concrete using Ground Calcium Carbonate(GCC) gathering in limestone mine of Banyans district in order to make self-compacting concrete in the range of design strength 300kgf/cm$^2$ and the optimal mix proportion of self-compacting concrete that can use in field structure. The result shows that the optimal GCC replacement ratio is 45$\pm$5% in the normal strength of design strength 300kgf/cm$^2$ and that the volume ratio of the optimal fine aggregate used as the way satisfying both viscosity and compacting ability without separating materials is 46%. The optimal volume ratio of the coarse aggregate considering the economical aspect of concrete is 50%. It is desirable that the optimal mix proportion satisfying self-compacting for replacement of GCC is decided through mix design according to each replacement ratio.

  • PDF

A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement. (콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구)

  • 배주성;고영주;김재경;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • You, Jei-Jun;Lee, Han-Seung;Bae, Kyu-Woong;Lee, Sang-Sup;Yeon, Gyu-Bong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.49-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of prefoamed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/㎠ or more compressive strength, when was unit weight 0.8t/㎡. In the case of the same unit weight of concrete, it is influenced by w/c of foam agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufatured with the different factors in mix design and also present optimum mix proportion.

  • PDF

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.49.1-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of preformed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/$\textrm{m}^3$ or more compressive strength, when was unit weight 0.8t/$\textrm{m}^3$. In the can of the same unit weight of concrete, it is influenced by w/c of loan agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufactured with the different factors in mix design and also present optimum mix proportion.

  • PDF

A Fundamental Study on the Optimal Mix Proportion for Antiwashout Underwater Concrete (수중 비분리 콘크리트의 최적 배합비에 관한 기초적 연구)

  • 진치섭;김희성;한태영
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.224-232
    • /
    • 1995
  • Recently, in other.view of underwater concrete construction, special admixture agent of concrete has been developed for antiwashout of concrete under water with easy carrying out method in some foreign nations. They had successful cases in experiment and construction and it trend to use in many cases with many scales. However, in domestic, there was rare record in carrying out. In this paper, reference for successful results of experiment and construction about antiwashout underwater concrete, as variable add of special admixture agent and other agents. We have carried out property tests of fresh and hardened concrete, certified the properties and made the antiwashout underwater concrete have enough strength to endure with ea.sy construction. And we have decided the optimal mix proportion for antiwashout underwater concrete under standard state.

Optimum Mix Proportion of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물을 위한 라텍스 개질 보수용 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • The service life of agricultural concrete structures is designed in about 30 to 100 years, but actual service lift is estimated in an average 18 years. Therefore, as the service life of the agricultural concrete structures increases, necessity of repair by aging from various environment condition exposure increases. This study was to determinate the optimum mix proportion of latex modified repair mortar and to improve the durability performance of agricultural concrete structures. The physical and mechanical tests of latex modified repair mortar were performed. Tests of flow, compressive strength, flexural strength and bond strength tests were conducted. Test results show that the optimum nex proportion of latex modified repair mortar, when used in 5% latex volume fraction (weight of cement), 1.5% antifoaming agent (weight of latex), 0.2% PVA fiber volume fraction, 1:2 (binder-sand ratio), 10% silica fume replacement ratio (weight of cement), could result in best performance for the repair of agricultural concrete structures.

An experimental evaluation of hardened property of concrete using early-strength-binder with curing temperature (조강형 결합재를 사용한 콘크리트의 양생온도에 따른 경화특성 실험적 평가)

  • Kim, Kwang-Ki;Kim, Young-sun;Lee, Joo-ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.88-89
    • /
    • 2015
  • In cold weather, the speed of concrete strength development is slow. As a result, construction speed becomes slow and it is problem for all construction site to solve this. So in this study, to shorten removing frame time after placing concrete, mix proportion using early-strength-binder(ESB) and curing method such as using heat line in concrete was considered. At first, concrete mix proportion was examined at -5℃ temperature between ordinary portland cement(OPC) and ESB. And second step, concrete, using mix proportion with OPC, was examined according to curing method(: 1) heat line used and 2) no heat line) and kinds of form (: 1) Deck slab, 2) Half PC slab and 3) SOG slab). All cases are same condition: slab thickness is 1,500mm, double-bubble sheet is used as a curing sheet after placing concrete. After the test, OPC is enough to get strength compared to ESB in special condition and 48~60 hours is needed according to form condition.

  • PDF

An Experimental Study on the Optimal Mix Proportion for Antiwashout Underwater Concrete (수중불분리성 혼화제를 첨가한 콘크리트의 최적배합비에 관한 실험적 연구)

  • 조선규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.179-187
    • /
    • 1996
  • Many underwater concrete structures have been constructed recently in proportion to the increase of ocean developments. The research for the underwater concrete construction was mainly focused in view of placing method. Recently, special admixture agents of concrete were developed for antiwashout concrete under water in some foreign nations. They had successful results in experiments and site constructions. However. there are seldom experimental results or placements in domestic contry. In this paper. We had carried out property tests of fresh and hardened concrete with refer to successful results in experiments and site construction and investigated the physical variation of the antiwashout underwater concrete considering the interaction between antiwashout admixture and other ones. We have decided the optimal mix proportion fb;r antiwashout underwater concrete under standerd sea state.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.