• Title/Summary/Keyword: Mitogen-activated protein kinases (MAPKs)

Search Result 210, Processing Time 0.033 seconds

Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells

  • Lu, Yue;Son, Jong-Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.526-531
    • /
    • 2012
  • During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$), cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$), and on phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid ($PGD_2$ and $LTC_4$) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of $PLC{\gamma}1$, intracellular $Ca^{2+}$ influx, the translocation of cytosolic phospholipase $A_2$ ($cPLA_2$) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular $Ca^{2+}$ influx by inhibiting $PLC{\gamma}1$ phosphorylation and suppressing the nuclear translocations of $cPLA_2$ and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.

Anti-inflammatory Effects of Belamcanda Chinensis Water Extract (사간 물 추출물의 항염증 효과)

  • Park, Sung-Joo;Kim, Soo-Kon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.410-415
    • /
    • 2010
  • The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Belamcanda chinensis (BC) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of BC, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kB) using Western blot. BC inhibited LPS-induced production of NO, IL-6 and TNF-a but not of IL-1b in RAW 264.7 cells. BC respectively inhibited the activation of MAPKs such as c-Jun NH2-terminal kinase (JNK) and p38 but not of extracelluar signal-regulated kinase (ERK 1/2) and NF-kB in the LPS-stimulated RAW 264.7 cells. Taken together, Our results showed that BC down-regulated LPS-induced NO, IL-6 and TNF-a productions mainly through JNK and p38 MAPK pathway.

Cyanidin 3 - rutinoside chloride (CRC) Regulates Pro-inflammatory Mediators in PMACI-stimulated HMC-1 Cells

  • Jeon, Yong-deok;AYE, AYE;Song, Young-Jae;Soh, Ju-Ryoun;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.106-106
    • /
    • 2018
  • Cyanidin 3 - rutinoside chloride (CRC) is major anthocyanin, found in Schisandra chinensis, is known to have antioxidant, anticancer, anti-inflammatory, tonic, and anti-aging effects in Korea, China and Japan. In the present study, the human mast cell line (HMC-1) was used to investigate the effects on the production of pro-inflammatory mediators. In this study, CRC showed no cytotoxicity in HMC-1. CRC significantly inhibited the secretion of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$ and interleukin (IL)-6 in PMA plus A23187 cacium ionophore (PMACI)-stimulated HMC-1 cells. In addition, CRC suppressed the serum levels of IgE. Furthermore, CRC decreased the PMACI- stimulated phosphorylation of mitogen activated protein kinases (MAPKs) such as p-ERK, p- JNK and p-P38. These results indicate that the pharmacological actions of CRC suggest their potential activity for treatment of allergic inflammation through the down-regulation of mast cell activation.

  • PDF

Shikonin Modulates Cell Proliferation by Inducing Apoptosis in LLC Cells via MAPK Regulation and Caspase Activation

  • Lee, Soo-Jin;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.501-507
    • /
    • 2005
  • Shikonin is a chemically characterized component of traditional herbal medicine, the root of Lithospermum erythrorhizon and has been shown to possess antitumor activities. Here we investigated anticancer potential of shikonin and its possible mechanism of action in LLC cells. Shikonin inhibited the proliferation of LLC cells in a concentration-dependent manner. It was also demonstrated that shikonin induced apoptosis in LLC cells by Annexin V staining and TUNEL staining analysis. Shikonin treatment was caused that decrease of Bcl-2, activation of caspases and cleavage of PARP. And shikonin also induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Interestingly, the cell proliferation inhibition induced by shikonin was recovered by specific inhibitors of JNK and p38 but the inhibitor of MEK, the upstream kinase of ERK, did not recover. Additionally, shikonin administration at doses of 5 mg/kg in C57BL/6 mice strongly inhibited the primary tumor growth of LLC. Taken together, these results suggest that shikonin may suppress LLC cell proliferation by inducing an apoptotic process via activation of caspases and MAPKs

Anti-Inflammatory and Anti-Fibrotic Activities of Nocardiopsis sp. 13G027 in Lipopolysaccharides-Induced RAW 264.7 Macrophages and Transforming Growth Factor Beta-1-Stimulated Nasal Polyp-Derived Fibroblasts

  • Choi, Grace;Kim, Geum Jin;Choi, Hyukjae;Choi, Il-Whan;Lee, Dae-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.543-551
    • /
    • 2021
  • Nocardiopsis species produce bioactive compounds, such as antimicrobial and anti-cancer agents and toxins. However, no reports have described their anti-inflammatory and anti-fibrotic effects during nasal polyp (NP) formation. In this study, we investigated whether marine-derived bacterial Nocardiopsis sp. 13G027 exerts anti-inflammatory and anti-fibrotic effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and transforming growth factor (TGF)-β1-induced NP-derived fibroblasts (NPDFs). Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were analyzed. Extract from Nocardiopsis sp. 13G027 significantly inhibited the upregulation of NO and PGE2 in LPS-activated RAW 264.7 macrophages. The expression of mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt/PKB) in LPS-induced RAW 264.7 macrophages was evaluated; smooth muscle alpha-actin (α-SMA), collagen type I (Col-1), and fibronectin also phosphorylated small mothers against decapentaplegic (SMAD) 2 and 3 in TGF-β1-stimulated NPDFs. The Nocardiopsis sp. 13G027 extract suppressed the phosphorylation of MAPKs and Akt and the DNA-binding activity of activator protein 1 (AP-1). The expression of pro-fibrotic components such as α-SMA, Col-1, fibronectin, and SMAD2/3 was inhibited in TGF-β1-exposed NPDFs. These findings suggest that Nocardiopsis sp. 13G027 has the potential to treat inflammatory disorders, such as NP formation.

Inhibitory Effect of Protaetiamycine 9 Derived from Protaetia brevitarsis seulensis Larvae on LPS-mediated Inflammation in RAW264.7 Cells (LPS로 자극한 RAW264.7 대식세포에서 흰점박이꽃무지 유충 유래 Protaetiamycine 9의 항염증 효과)

  • Choi, Ra-Yeong;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.987-994
    • /
    • 2021
  • Our previous studies have reported that antimicrobial peptides (AMPs) derived from the larvae of white-spotted flower chafer (Protaetia brevitarsis seulensis) exert anti-inflammatory and neuroprotective activities. This study explored the anti-inflammatory effects of protaetiamycine 9 (CVLKKAYFLTNLKLRG-NH2), a novel AMP, derived from P. b. seulensis against lipopolysaccharide (LPS)-mediated inflammatory response in RAW264.7 macrophage cells. Protaetiamycine 9 (25, 50, 75, and 100 ㎍/ml) did not cause cytotoxic effects against RAW264.7 cells. The RAW264.7 cells were pre-treated with various concentrations of protaetiamycine 9 (25-100 ㎍/ml) for 1 hr and then exposed to LPS (100 ng/ml) for 24 hr. Protaetiamycine 9 treatments decreased the LPS-induced secretion of inflammatory mediators, such as nitric oxide (NO), in a dose-dependent manner. Protaetiamycine 9 (25-100 ㎍/ml) effectively downregulated the LPS-induced increase in mRNA and the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. Protaetiamycine 9 also suppressed the production and gene expression of pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, compared to the presence of LPS alone. Furthermore, protaetiamycine 9 inhibited the degradation of inhibitory kappa B alpha (IκB-α) and the phosphorylation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In conclusion, these results suggest that protaetiamycine 9 exhibits LPS-mediated inflammatory responses by blocking IκB-α degradation and MAPK phosphorylation.

Immunomodulatory Activities of Apple Seed Extracts on Macrophage (사과씨 에탄올 추출물의 대식세포 면역 조절 활성)

  • Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1513-1517
    • /
    • 2013
  • This study examined the immunomodulatory activities of apple seed extracts (ASE). The immunomodulatory effects were estimated through nitric oxide production, cytokine induction, protein expression of inducible nitric oxide synthase (iNOS), and the phosphylation of mitogen-activated protein kinases (MAPKs) and inhibitory kappa $B{\alpha}$ ($I{\kappa}B-{\alpha}$) in the RAW 264.7 macrophage cell line. In the cytotoxicity asay, ASE (31 to $250{\mu}g/mL$) did not induce cytotoxicity; thus, the optimal concentration of ASE was confirmed to be less than $250{\mu}g/mL$. Nitric oxide (NO) and cytokines (tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6) production significantly increased in a dose-dependent manner. Similarly, the protein expression of iNOS and the phosphorylation of MAPKs and $I{\kappa}B-{\alpha}$ were also increased by ASE treatment. Overall, our results suggest that extracts from apple seeds potentially have immunomodulatory activities on macrophages.

Britanin Suppresses IgE/Ag-Induced Mast Cell Activation by Inhibiting the Syk Pathway

  • Lu, Yue;Li, Xian;Park, Young Na;Kwon, Okyun;Piao, Donggen;Chang, Young-Chae;Kim, Cheorl-Ho;Lee, Eunkyung;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.193-199
    • /
    • 2014
  • The aim of this study was to determine whether britanin, isolated from the flowers of Inula japonica (Inulae Flos), modulates the generation of allergic inflammatory mediators in activated mast cells. To understand the biological activity of britanin, the authors investigated its effects on the generation of prostaglandin $D_2$ ($PGD_2$), leukotriene $C_4$ ($LTC_4$), and degranulation in IgE/Ag-induced bone marrow-derived mast cells (BMMCs). Britanin dose dependently inhibited degranulation and the generations of $PGD_2$ and $LTC_4$ in BMMCs. Biochemical analyses of IgE/Ag-mediated signaling pathways demonstrated that britanin suppressed the phosphorylation of Syk kinase and multiple downstream signaling processes, including phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated calcium influx, the activation of mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase 1/2, c-Jun $NH_2$-terminal kinase and p38), and the nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) pathway. Taken together, the findings of this study suggest britanin suppresses degranulation and eicosanoid generation by inhibiting the Syk-dependent pathway and britanin might be useful for the treatment of allergic inflammatory diseases.

Effect of Methyl Gallate on 1-Nitropyrene-Induced Keratinocyte Toxicity in a Human and Canine Skin Model

  • Lee, Woo Jin;Kim, Min Jeong;Choi, Hyun-Wook;Lee, Jeong Jae;Jung, Sung Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.869-876
    • /
    • 2022
  • The skin, which is the largest organ of the human body, is in direct contact with pollutants in the surrounding atmosphere. Meanwhile, 1-nitropyrene (1-NP), the most abundant nitro-polycyclic aromatic hydrocarbon found in particulate matter, is known to have carcinogenic effects; however, studies on its toxicity in human and canine skin are still needed. In this study, we investigated 1-NP-induced apoptosis and inflammatory pathways in HaCaT cells. In addition, we also measured the cytoprotective effect of methyl gallate (MG), which is widely distributed in medicinal and edible plants and is well known for its anti-inflammatory and antioxidant properties. MG inhibited 1-NP-induced cell death and apoptosis pathways, including the cleavage of PARP and activation of caspase-3, -7, and -9. MG also suppressed 1-NP-induced COX-2 expression and phosphorylation of mitogen-activated protein kinases (MAPKs) and MAPK kinases (MAPKKs). Our findings suggest that 1-NP induces skin toxicity in human and canine through apoptosis and inflammatory responses, and moreover, that this can be prevented by treatment with MG.

Protective Effect of Rice Bran Oil against β-Amyloid Protein-Induced Memory Impairment and Neuronal Death in Mice

  • Jang, Ji Yeon;Lee, Hong Kyu;Yoo, Hwan-Su;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.221-229
    • /
    • 2020
  • This study was undertaken to investigate the protective effect of rice bran oil (RBO) on amyloid β protein (Aβ) (25-35)-induced memory impairment and brain damage in an ICR mouse model. Memory impairment was produced by intracerebroventricular microinjection of 15 nmol Aβ (25-35) and assessed using the passive avoidance test. Treatment with RBO at 0.1, 0.5, or 1 mL/kg (p.o. daily for 8 days) protected against Aβ (25-35)-induced memory impairment. Furthermore, Aβ (25-35)-induced decreases in glutathione and increases in lipid peroxidation and cholinesterase activity in brain tissue were inhibited by RBO, and Aβ (25-35)-induced increases of phosphorylated mitogen-activated protein kinases (MAPKs) and inflammatory factors, and changes in the levels of apoptosis-related proteins were significantly inhibited by RBO. Furthermore, Aβ (25-35) suppressed the PI3K/Akt pathway and the phosphorylation of CREB, but increased phosphorylation of tau (p-tau) in mice brain; these effects were significantly inhibited by administration of RBO. These results suggest that RBO inhibits Aβ (25-35)-induced memory impairment by inducing anti-apoptotic and anti-inflammatory effects, promoting PI3K/Akt/CREB signaling, and thus, inhibiting p-tau formation.