• Title/Summary/Keyword: Mitogen-Activated Protein Kinase 3

검색결과 398건 처리시간 0.048초

고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성 (The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy)

  • 김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제20권3호
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Eucommia ulmoides Extract Stimulates Glucose Uptake through PI 3-kinase Mediated Pathway in L6 Rat Skeletal Muscle Cells

  • Hong, Eui-Jae;Hong, Seung-Jae;Jung, Kyung-Hee;Ban, Ju-Yeon;Baek, Yong-Hyeon;Woo, Hyun-Su;Park, Dong-Suk
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.224-229
    • /
    • 2008
  • Eucommia ulmoides (Duchung) is commonly used for treatment of diabetes in Korean traditional medicine. However, the exact mechanism of its anti-diabetic effect has not yet been fully elucidated. In this study, the effect of E. ulmoides extract on glucose uptake was investigated in L6 rat skeletal muscle cells. E. ulmoides extract stimulated the activity of phosphatidylinositol (PI) 3-kinase that is a major regulatory molecule in glucose uptake pathway. Protein kinase B (PKB) and protein kinase C-${\xi}$ (PKC-${\xi}$), downstream mediators of PI 3-kinase, were also activated by E. ulmoides extract. We assessed the activity of AMP-activated protein kinase (AMPK), another regulatory molecule in glucose uptake pathway. Phosphorylation level of AMPK did not change with treatment of E. ulmoides extract. Phosphorylations of p38 mitogen activated protein kinase (p38 MAPK) and acetyl-CoA carboxylase (ACC), downstream mediators of AMPK, were not significantly different. Taken together, our results suggest that E. ulmoides may stimulate glucose uptake through PI 3-kinase but not AMPK in L6 skeletal muscle cells.

RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과 (Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells)

  • 윤현서;안현;박충무
    • 생명과학회지
    • /
    • 제33권6호
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura는 전 세계적으로 널리 분포하는 갈조류 중 하나이다. 몇몇 산말류의 항종양, 멜라닌 생성 억제 및 광보호 활성에 대한 연구는 있었으나 D. tabacoides Okamura의 항염증 기전에 대해서는 보고되지 않아 본 연구에서는 LPS (lipopolysaccharide)로 자극된 RAW 264.7 세포에서 D. tabacoides Okamura 에탄올 추출물(DTEE)의 항염증 기전을 inducible nitric oxide synthase (iNOS)와 cyclooxygenase (COX)-2의 발현 및 이들의 상위신호전달물질인 nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) 그리고 phosphoinositide-3-kinase (PI3K)/Akt의 인산화 조절 정도를 통해 분석하였다. DTEE의 처리는 세포 독성 없이 LPS로 유도된 NO와 prostaglandin (PG) E2의 생성과 이들의 생성 효소인 iNOS 및 COX-2의 발현을 유의하게 억제하였다. 그리고 LPS에 의해 활성화된 NF-κB 및 상위 신호 전달 물질인 extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) 및 p38은 DTEE 처리에 의해 유의적으로 억제되었다. DTEE의 처리는 RAW 264.7 세포에서 LPS에 의해 활성화되는 adaptor molecule인 Toll-like receptor (TLR) 4 및 myeloid differentiation primary response (MyD) 88 또한 유의적으로 억제하였다. 이 결과를 통해 DTEE는 LPS에 의해 유도된 TLR4와 NF-κB 및 MAPK의 활성을 억제함으로써 염증 매개인자의 발현을 조절하였고, 이는 DTEE가 염증을 완화할 수 있는 기능성 식품의 소재로써 유용하게 사용될 수 있음을 시사한다.

Virtual Screening and Biochemical Evaluation of Mitogen-activated Protein Kinase Phosphatase 4 Inhibitors

  • Park, Hwangseo;Jeon, Jeong-Yi;Ryu, Seong Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3772-3776
    • /
    • 2012
  • Mitogen-activated protein kinase phosphatase 4 (MKP4) has proved to be a promising target for the development of therapeutics for the treatment of diabetes and the other metabolic diseases. Here, we report an example for a successful application of the structure-based virtual screening to identify three novel inhibitors of MKP4. These inhibitors have desirable physicochemical properties as a drug candidate and reveal a moderate potency with $IC_{50}$ values ranging from 4.9 to $32.3{\mu}M$. Therefore, they deserve consideration for further development by structure-activity relationship studies to optimize the inhibitory and antidiabetic activities. Structural features relevant to the stabilization of the newly identified inhibitors in the active site of MKP4 are discussed in detail.

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • 제60권6호
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways

  • Kim, Do-Yeon;Jung, Mi-Song;Park, Young-Guk;Yuan, Hai Dan;Quan, Hai Yan;Chung, Sung-Hyun
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.659-664
    • /
    • 2011
  • As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).

Protein Kinase A Functions as a Negative Regulator of c-Jun N-terminal Kinase but not of p38 Mitogen-activated Protein Kinase in PC12 Cells

  • Hur, Kyu-Chung
    • Animal cells and systems
    • /
    • 제9권3호
    • /
    • pp.173-179
    • /
    • 2005
  • Cyclic-AMP-dependent protein kinase (PKA) seems to function as a negative regulator of the c-Jun $NH_2-terminal$ kinase (JNK) signaling pathway. We demonstrate here that the activity of the PKA catalytic subunit (PKAc) is reduced in apoptotic PC12 pheochromocytoma cells. Apoptotic progress was inhibited by dibutyryl cyclic AMP (dbcAMP), an analog of cAMP. The rescue by dbcAMP was attributable to inhibition of the JNK but not of the p38 signaling pathway, due to the induction of PKA activity. JNK was present in immunocomplexes of PKAc, and PKAc phosphorylated JNK in vitro. Presence of p38 kinase, however, was not prominent in immunocomplexes of PKAc. Our data suggest that JNK is a target point of negative regulation by PKAc in the JNK signaling pathway.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Antiplatelet activity of esculetin through the down-regulation of PI3K/MAPK pathway

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.317-322
    • /
    • 2021
  • Among the different cardiovascular disorders (CVDs), the activation of platelets is a necessary step. Based on this knowledge, therapeutic treatments for CVDs that target the disruption of platelet activation are proving to be worthwhile. One such substance, a bioactive 6,7-dihydroxy derived from coumarin, is 6,7-Dihydroxy-2H-1-benzopyran-2-one (esculetin). This compound has demonstrated several pharmacological effects on CVDS as well as various other disorders including diabetes, obesity, and renal failure. In various reports, esculetin and its effect has been explored in experimental mouse models, human platelet activation, esculetin-inhibited collagen, and washed human platelets exhibiting aggregation via arachidonic acid. Yet, esculetin affected aggregation with agonists like U46619 or thrombin in no way. This study investigated esculetin and how it affected human platelet aggregation activated through U46619. Ultimately, we confirmed that esculetin had an effect on the aggregation of human platelets when induced from U46619 and clarified the mechanism. Esculetin interacts with the downregulation of both phosphoinositide 3-kinase/Akt and mitogen-activated protein kinases, important phosphoproteins that are involved in activating platelets and their signaling process. The effects of esculetin reduced TXA2 production, phospholipase A2 activation, and platelet secretion of intracellular granules (ATP/serotonin), ultimately causing inhibition of overall platelet aggregation. These results clearly define the effect of esculetin in inhibiting platelet activity and thrombus formation in humans.