Browse > Article
http://dx.doi.org/10.5483/BMBRep.2020.53.1.274

Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer's disease  

Yoo, Seung-Min (School of Biological Sciences, Seoul National University)
Park, Jisu (School of Biological Sciences, Seoul National University)
Kim, Seo-Hyun (School of Biological Sciences, Seoul National University)
Jung, Yong-Keun (School of Biological Sciences, Seoul National University)
Publication Information
BMB Reports / v.53, no.1, 2020 , pp. 35-46 More about this Journal
Abstract
Despite enduring diverse insults, mitochondria maintain normal functions through mitochondrial quality control. However, the failure of mitochondrial quality control resulting from excess damage and mechanical defects causes mitochondrial dysfunction, leading to various human diseases. Recent studies have reported that mitochondrial defects are found in Alzheimer's disease (AD) and worsen AD symptoms. In AD pathogenesis, mitochondrial dysfunction-driven generation of reactive oxygen species (ROS) and their contribution to neuronal damage has been widely studied. In contrast, studies on mitochondrial dysfunction-associated inflammatory responses have been relatively scarce. Moreover, ROS produced upon failure of mitochondrial quality control may be linked to the inflammatory response and influence the progression of AD. Thus, this review will focus on inflammatory pathways that are associated with and initiated through defective mitochondria and will summarize recent progress on the role of mitochondria-mediated inflammation in AD. We will also discuss how reducing mitochondrial dysfunction-mediated inflammation could affect AD.
Keywords
Alzheimer's disease; Dysfunction; Inflammation; Mitochondria;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Grilli M, Ribola M, Alberici A, Valerio A, Memo M and Spano P (1995) Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 270, 26774-26777   DOI
2 Cho HJ, Kim SK, Jin SM et al (2007) IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia 55, 253-262   DOI
3 Sy M, Kitazawa M, Medeiros R et al (2011) Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Pathol 178, 2811-2822   DOI
4 Billups B and Forsythe ID (2002) Presynaptic Mitochondrial Calcium Sequestration Influences Transmission at Mammalian Central Synapses. J Neurosci 22, 5840-5847   DOI
5 Zhou B, Yu P, Lin M-Y, Sun T, Chen Y and Sheng ZH (2016) Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 214, 103-119   DOI
6 Tang FL, Liu W, Hu JX et al (2015) VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function. Cell Rep 12, 1631-1643   DOI
7 Johnson AB and Blum NR (1970) Nucleoside phosphatase activities associated with the tangles and plaques of alzheimer's disease: a histochemical study of natural and experimental neurofibrillary tangles. J Neuropathol Exp Neurol 29, 463-478   DOI
8 Zhang L, Trushin S, Christensen TA et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease. Sci Rep 6, 18725   DOI
9 Gibson GE, Sheu KF, Blass JP et al (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer's disease. Arch Neurol 45, 836-840   DOI
10 Pointer CB and Klegeris A (2017) Cardiolipin in Central Nervous System Physiology and Pathology. Cell Mol Neurobiol 37, 1161-1172   DOI
11 Petrosillo G, Matera M, Casanova G, Ruggiero FM and Paradies G (2008) Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 53, 126-131   DOI
12 Perier C, Tieu K, Guegan C et al (2005) Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci U S A 102, 19126-19131   DOI
13 Little JP, Simtchouk S, Schindler SM et al (2014) Mitochondrial transcription factor A (Tfam) is a proinflammatory extracellular signaling molecule recognized by brain microglia. Mol Cell Neurosci 60, 88-96   DOI
14 Schindler SM, Frank MG, Annis JL, Maier SF and Klegeris A (2018) Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Mol Cell Neurosci 89, 71-79   DOI
15 Julian MW, Shao G, Vangundy ZC, Papenfuss TL and Crouser ED (2013) Mitochondrial transcription factor A, an endogenous danger signal, promotes $TNF{\alpha}$ release via RAGE- and TLR9-responsive plasmacytoid dendritic cells. PLoS One 8, e72354-e72354
16 Verdier Y, Zarandi M and Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J Pept Sci 10, 229-248   DOI
17 Smigrodzki RM and Khan SM (2005) Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 8, 172-198   DOI
18 Asano T, Koike M, Sakata S et al (2015) Possible involvement of iron-induced oxidative insults in neurodegeneration. Neurosci Lett 588, 29-35   DOI
19 Mena NP, Urrutia PJ, Lourido F, Carrasco CM and Nunez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21, 92-105   DOI
20 Thomsen MS, Andersen MV, Christoffersen PR, Jensen MD, Lichota J and Moos T (2015) Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis 81, 108-118   DOI
21 Casoli T, Spazzafumo L, Di Stefano G and Conti F (2015) Role of diffuse low-level heteroplasmy of mitochondrial DNA in Alzheimer's disease neurodegeneration. Front Aging Neurosci 7, 142-142
22 Onyango IG (2018) Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 13, 19-25   DOI
23 Jo A, Ham S, Lee GH et al (2015) Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed Res Int 2015, 305716   DOI
24 Hashimoto M, Bacman SR, Peralta S et al (2015) MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Mol Ther 23, 1592-1599   DOI
25 Zhong Y, Hu YJ, Chen B et al (2011) Mitochondrial transcription factor A overexpression and base excision repair deficiency in the inner ear of rats with D-galactose-induced aging. FEBS J 278, 2500-2510   DOI
26 Chu CT, Bayir H and Kagan VE (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons Implications for Parkinson disease. Autophagy 10, 376-378   DOI
27 Pan ZK, Chen LY, Cochrane CG and Zuraw BL (2000) fMet-Leu-Phe stimulates proinflammatory cytokine gene expression in human peripheral blood monocytes: the role of phosphatidylinositol 3-kinase. J Immunol 164, 404-411   DOI
28 Banoth B and Cassel SL (2018) Mitochondria in innate immune signaling. Transl Res 202, 52-68   DOI
29 Iyer SS, He Q, Janczy JR et al (2013) Mitochondrial Cardiolipin Is Required for Nlrp3 Inflammasome Activation. Immunity 39, 311-323   DOI
30 Allard B, Longhi MS, Robson SC and Stagg J (2017) The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 276, 121-144   DOI
31 Amores-Iniesta J, Barbera-Cremades M, Martinez CM et al (2017) Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Rep 21, 3414-3426   DOI
32 Cauwels A, Rogge E, Vandendriessche B, Shiva S and Brouckaert P (2014) Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis 5, e1102-e1102
33 Eleftheriadis T, Pissas G, Liakopoulos V and Stefanidis I (2016) Cytochrome c as a Potentially Clinical Useful Marker of Mitochondrial and Cellular Damage. Front Immunol 7, 279   DOI
34 Lin ML, Zhan Y, Projetto AI et al (2008) Selective suicide of cross-presenting CD8(+) dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. Proc Natl Acad Sci U S A 105, 3029-3034   DOI
35 Mutisya EM, Bowling AC and Beal MF (1994) Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer's Disease. J Neurochem 63, 2179-2184   DOI
36 Xie J, Mendez JD, Mendez-Valenzuela V and Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25, 2185-2197   DOI
37 Lue LF, Walker DG, Brachova L et al (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol 171, 29-45   DOI
38 Hayashi Y, Yoshida M, Yamato M et al (2008) Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci 28, 8624-8634   DOI
39 Codina R, Vanasse A, Kelekar A, Vezys V and Jemmerson R (2010) Cytochrome c-induced lymphocyte death from the outside in: inhibition by serum leucine-rich alpha-2-glycoprotein-1. Apoptosis 15, 139-152   DOI
40 Sorbi S, Bird ED and Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13, 72-78   DOI
41 Mecocci P, MacGarvey U and Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann Neurol 36, 747-751   DOI
42 Reddy PH, Yin X, Manczak M et al (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease. Hum Mol Genet 27, 2502-2516   DOI
43 Devi L, Prabhu BM, Galati DF, Avadhani NG and Anandatheerthavarada HK (2006) Accumulation of Amyloid Precursor Protein in the Mitochondrial Import Channels of Human Alzheimer's Disease Brain Is Associated with Mitochondrial Dysfunction. J Neurosci 26, 9057-9068   DOI
44 Lustbader JW, Cirilli M, Lin C et al (2004) ABAD Directly Links $A{\beta}$ to Mitochondrial Toxicity in Alzheimer's Disease. Science 304, 448-452   DOI
45 Daniels MJ, Rivers-Auty J, Schilling T et al (2016) Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nat Commun 7, 12504   DOI
46 Xu S, Zhong M, Zhang L et al (2009) Overexpression of Tfam protects mitochondria against beta-amyloidinduced oxidative damage in SH-SY5Y cells. FEBS J 276, 3800-3809   DOI
47 Oka S, Leon J, Sakumi K et al (2016) Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease. Sci Rep 6, 37889   DOI
48 Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674-678   DOI
49 Dempsey C, Rubio Araiz A, Bryson KJ et al (2017) Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav Immun 61, 306-316   DOI
50 Yin J, Zhao F, Chojnacki JE et al (2018) NLRP3 Inflammasome Inhibitor Ameliorates Amyloid Pathology in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 55, 1977-1987   DOI
51 Kozlov AV, Lancaster JR, Meszaros AT and Weidinger A (2017) Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 13, 170-181   DOI
52 Manczak M and Reddy PH (2012) Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. Hum Mol Genet 21, 5131-5146   DOI
53 Park J, Choi H, Min JS et al (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132, 687-702   DOI
54 Kim DI, Lee KH, Gabr AA et al (2016) $A{\beta}$-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta 1863, 2820-2834   DOI
55 Pullerits R, Bokarewa M, Jonsson IM, Verdrengh M and Tarkowski A (2005) Extracellular cytochrome c, a mitochondrial apoptosis-related protein, induces arthritis. Rheumatology 44, 32-39   DOI
56 Mittal M, Siddiqui MR, Tran K, Reddy SP and Malik AB (2014) Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid Redox Sign 20, 1126-1167   DOI
57 Naik E and Dixit VM (2011) Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 208, 417-420   DOI
58 Nakahira K, Haspel JA, Rathinam VAK et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12, 222-230   DOI
59 West AP, Khoury-Hanold W, Staron M et al (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553-557   DOI
60 Tian J, Avalos AM, Mao SY et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8, 487-496   DOI
61 Gouveia A, Bajwa E and Klegeris A (2017) Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochim Biophys Acta Gen Subj 1861, 2274-2281   DOI
62 Papaliagkas V, Anogeianakis G, Tsolaki M, Koliakos G and Kimiskidis V (2009) Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease by CSF Cytochrome c Levels and N200 Latency. Curr Alzheimer Res 6, 279-284   DOI
63 Takuma K, Yan SS, Stern DM and Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer's disease. J Pharmacol Sci 97, 312-316   DOI
64 Krysko DV, Agostinis P, Krysko O et al (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32, 157-164   DOI
65 Oyewole AO and Birch-Machin MA (2015) Mitochondriatargeted antioxidants. FASEB J 29, 4766-4771   DOI
66 Jacobs JL and Coyne CB (2013) Mechanisms of MAVS Regulation at the Mitochondrial Membrane. J Mol Biol 425, 5009-5019   DOI
67 Yang Y, Wang H, Kouadir M, Song H and Shi F (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10, 128   DOI
68 Lautrup S, Lou G, Aman Y, Nilsen H, Tao J and Fang EF (2019) Microglial mitophagy mitigates neuroinflammation in Alzheimer's disease. Neurochem Int 129, 104469   DOI
69 Fang EF, Hou Y, Palikaras K et al (2019) Mitophagy inhibits amyloid-${\beta}$ and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci 22, 401-412   DOI
70 Julian MW, Shao GH, Bao SY et al (2012) Mitochondrial Transcription Factor A Serves as a Danger Signal by Augmenting Plasmacytoid Dendritic Cell Responses to DNA. J Immunol 189, 433-443   DOI
71 Seth RB, Sun LJ, Ea CK and Chen ZJJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappa B and IRF3. Cell 122, 669-682   DOI
72 Dashdorj A, Jyothi KR, Lim S et al (2013) Mitochondriatargeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasomemediated inflammatory cytokines. BMC Med 11, 178   DOI
73 Jauslin ML, Meier T, Smith RA and Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17, 1972-1974
74 Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP and Seals DR (2014) Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol 592, 2549-2561   DOI
75 Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B and Kanthasamy AG (2014) Mitochondriatargeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochimica et biophysica acta 1842, 1282-1294   DOI
76 Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923   DOI
77 Yoo SM and Jung YK (2018) A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol Cells 41, 18-26   DOI
78 Suomalainen A and Battersby BJ (2018) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19, 77-92   DOI
79 Leyns CEG, Ulrich JD, Finn MB et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 114, 11524-11529   DOI
80 Robert J, Button EB, Yuen B et al (2017) Clearance of beta-amyloid is facilitated by apolipoprotein E and circulating high-density lipoproteins in bioengineered human vessels. Elife 6, e29595.   DOI
81 Tai LM, Ghura S, Koster KP et al (2015) APOE-modulated Abeta-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 133, 465-488   DOI
82 Smith RA, Hartley RC, Cocheme HM and Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33, 341-352   DOI
83 Zhang B, Gaiteri C, Bodea LG et al (2013) Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer's Disease. Cell 153, 707-720   DOI
84 Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86, 7611-7615   DOI
85 Eikelenboom P and Stam FC (1982) Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol 57, 239-242   DOI
86 Zhou R, Yazdi AS, Menu P and Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225   DOI
87 Fukui H, Diaz F, Garcia S and Moraes CT (2007) Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 104, 14163-14168   DOI
88 Krishnan KJ, Ratnaike TE, De Gruyter HLM, Jaros E and Turnbull DM (2012) Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer's disease. Neurobiol Aging 33, 2210-2214   DOI
89 Hoekstra JG, Hipp MJ, Montine TJ and Kennedy SR (2016) Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann Neurol 80, 301-306   DOI
90 Lei Q, Tan J, Yi S, Wu N, Wang Y and Wu H (2018) Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFalpha-induced apoptosis via increased Bnip3-related mitophagy. Cell Mol Biol Lett 23, 14   DOI
91 Jiang S, Nandy P, Wang W et al (2018) Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex. Mol Neurodegener 13, 5   DOI
92 Park J, Choi H, Min JS et al (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127, 221-232   DOI
93 Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM and Bohr VA (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25, 158-170   DOI
94 Coskun PE, Beal MF and Wallace DC (2004) Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101, 10726-10731   DOI
95 Hoglinger GU, Lannuzel A, Khondiker ME et al (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95, 930-939   DOI
96 Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217   DOI
97 Hammerling BC and Gustafsson AB (2014) Mitochondrial quality control in the myocardium: Cooperation between protein degradation and mitophagy. J Mol Cell Cardiol 75, 122-130   DOI
98 Cenini G and Voos W (2016) Role of Mitochondrial Protein Quality Control in Oxidative Stress-induced Neurodegenerative Diseases. Curr Alzheimer Res 13, 164-173   DOI
99 Bragoszewski P, Turek M and Chacinska A (2017) Control of mitochondrial biogenesis and function by the ubiquitin - proteasome system. Open Biol 7, 17007
100 Subramanian N, Natarajan K, Clatworthy MR, Wang Z and Germain RN (2013) The Adaptor MAVS Promotes NLRP3 Mitochondrial Localization and Inflammasome Activation. Cell 153, 348-361   DOI
101 Castanier C, Garcin D, Vazquez A and Arnoult D (2010) Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 11, 133-138   DOI
102 Yasukawa K, Oshiumi H, Takeda M et al (2009) Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling. Sci Signal 2, ra47   DOI
103 Tang ED and Wang CY (2009) MAVS Self-Association Mediates Antiviral Innate Immune Signaling. J Virol 83, 3420-3428   DOI
104 Vogel RO, Janssen RJRJ, van den Brand MAM et al (2007) Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Gene Dev 21, 615-624   DOI
105 Barber GN (2014) STING-dependent cytosolic DNA sensing pathways. Trends Immunol 35, 88-93   DOI
106 Kim H, Lee JY, Park KJ, Kim W-H and Roh GS (2016) A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci 17, 33   DOI
107 Joshi AU, Minhas PS, Liddelow SA et al (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22, 1635-1648   DOI
108 Akhter F, Chen D, Yan SF and Yan SS (2017) Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. Prog Mol Biol Transl Sci 146, 341-361   DOI
109 Liang Q, Seo GJ, Choi YJ et al (2014) Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228-238   DOI
110 Sliter DA, Martinez J, Hao L et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258-262   DOI
111 Wilkins HM, Carl SM, Greenlief ACS, Festoff BW and Swerdlow RH (2014) Bioenergetic Dysfunction and Inflammation in Alzheimer's Disease: A Possible Connection. Front Aging Neurosci 6, 311
112 Geng J, Sun XF, Wang P et al (2015) Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol 16, 1142-1152   DOI
113 Carneiro FRG, Lepelley A, Seeley JJ, Hayden MS and Ghosh S (2018) An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages. Cell Rep 22, 2654-2666   DOI
114 Shi HX, Liu X, Wang Q et al (2011) Mitochondrial Ubiquitin Ligase MARCH5 Promotes TLR7 Signaling by Attenuating TANK Action. PLoS Pathog 7, e1002057   DOI
115 Wilkins HM, Weidling IW, Ji Y and Swerdlow RH (2017) Mitochondria-Derived Damage-Associated Molecular Patterns in Neurodegeneration. Front Immunol 8, 508   DOI
116 Wyss-Coray T, Lin C, Yan F et al (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7, 612-618   DOI
117 Eriksen JL, Sagi SA, Smith TE et al (2003) NSAIDs and enantiomers of flurbiprofen target ${\gamma}$-secretase and lower $A{\beta}42$ in vivo. J Clin Invest 112, 440-449   DOI
118 Yan Q, Zhang J, Liu H et al (2003) Anti-Inflammatory Drug Therapy Alters ${\beta}$-Amyloid Processing and Deposition in an Animal Model of Alzheimer's Disease. J Neurosci 23, 7504-7509   DOI
119 Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L and Breitner JCS (2002) Reduced incidence of AD with NSAID but not not H2 receptor antagonists: the Cache County Study. Neurology 59, 880-886   DOI
120 Breitner JC, Welsh KA, Helms MJ et al (1995) Delayed onset of Alzheimer's disease with nonsteroidal antiinflammatory and histamine H2 blocking drugs. Neurobiol Aging 16, 523-530   DOI
121 Wyss-Coray T, Yan F, Lin AHT et al (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc Natl Acad Sci U S A 99, 10837-10842   DOI
122 Liu CC, Hu J, Zhao N et al (2017) Astrocytic LRP1 Mediates Brain Abeta Clearance and Impacts Amyloid Deposition. J Neurosci 37, 4023-4031   DOI
123 Kanekiyo T, Cirrito JR, Liu CC et al (2013) Neuronal clearance of amyloid-beta by endocytic receptor LRP1. J Neurosci 33, 19276-19283   DOI
124 Fu Y, Hsiao JH, Paxinos G, Halliday GM and Kim WS (2016) ABCA7 Mediates Phagocytic Clearance of Amyloid-beta in the Brain. J Alzheimers Dis 54, 569-584   DOI
125 Chakrabarty P, Li A, Ceballos-Diaz C et al (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85, 519-533   DOI
126 Contis A, Mitrovic S, Lavie J et al (2017) Neutrophil-derived mitochondrial DNA promotes receptor activator of nuclear factor kappaB and its ligand signalling in rheumatoid arthritis. Rheumatology 56, 1200-1205   DOI
127 Meyer A, Laverny G, Bernardi L et al (2018) Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. Front Immunol 9, 536   DOI
128 Bajwa E, Pointer CB and Klegeris A (2019) The Role of Mitochondrial Damage-Associated Molecular Patterns in Chronic Neuroinflammation. Mediators Inflammation 2019, 4050796   DOI
129 Archibald JM (2015) Endosymbiosis and Eukaryotic Cell Evolution. Curr Biol 25, R911-921   DOI
130 Barbalat R, Ewald SE, Mouchess ML and Barton GM (2011) Nucleic acid recognition by the innate immune system. Annu Rev Immunol 29, 185-214   DOI
131 Shimada K, Crother TR, Karlin J et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401-414   DOI
132 Bai J and Liu F (2019) The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 68, 1099-1108   DOI
133 Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K and Rossi AG (2015) The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol 185, 1172-1184   DOI
134 Dahlgren C, Gabl M, Holdfeldt A, Winther M and Forsman H (2016) Basic characteristics of the neutrophil receptors that recognize formylated peptides, a dangerassociated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 114, 22-39   DOI
135 Suliman HB and Piantadosi CA (2016) Mitochondrial Quality Control as a Therapeutic Target. Pharmacol Rev 68, 20-48   DOI
136 Raoof M, Zhang Q, Itagaki K and Hauser CJ (2010) Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J Trauma 68, 1328-1332; discussion 1332-1324   DOI
137 Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061-1071   DOI
138 Wilkins HM, Koppel SJ, Weidling IW et al (2016) Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. J Neuroimmune Pharmacol 11, 622-628   DOI
139 Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer's disease. N Engl J Med 368, 117-127   DOI
140 Korvatska O, Leverenz JB, Jayadev S et al (2015) R47H Variant of TREM2 Associated With Alzheimer Disease in a Large Late-Onset Family: Clinical, Genetic, and Neuropathological Study. JAMA Neurol 72, 920-927   DOI
141 Turnbull IR, Gilfillan S, Cella M et al (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177, 3520-3524   DOI
142 Jiang T, Zhang YD, Chen Q et al (2016) TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology 105, 196-206   DOI
143 Podlesniy P, Figueiro-Silva J, Llado A et al (2013) Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol 74, 655-668   DOI
144 Thubron EB, Rosa HS, Hodges A et al (2019) Regional mitochondrial DNA and cell-type changes in post-mortem brains of non-diabetic Alzheimer's disease are not present in diabetic Alzheimer's disease. Sci Rep 9, 11386   DOI
145 Ruggiero FM, Cafagna F, Petruzzella V, Gadaleta MN and Quagliariello E (1992) Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J Neurochem 59, 487-491   DOI