• 제목/요약/키워드: Mitochondrial DNA copy number

검색결과 22건 처리시간 0.026초

지방간 및 대사 인자들과 말초혈액 백혈구의 사립체 DNA copy 수와의 연관성 (Relationship Between Mitochondrial DNA Copy Number, Metabolic Abnormalities and Hepatic Steatosis)

  • 권길영;전대원
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2093-2098
    • /
    • 2010
  • 지방간은 대사증후군의 한 형태로 인슐린저항성이 중요한 역할을 한다. 본 연구는 당뇨 및 대사 인자들과 연관성이 있는 것으로 알려진 말초혈액의 사립체 DNA (mtDNA) copy 수와 지방간 및 인슐린저항성 관련 인자와의 연관성을 알아보고자 하였다. 지방간 진단을 위해 음주력 설문과 복부 초음파 검사를 시행하였으며 실시간 중합효소 연쇄반응을 이용하여 말초혈액의 백혈구에서 mtDNA copy 수를 측정하였다. 총 445 명의 대상자 중 지방간이 있는군(fatty liver group)은 148 명이고 정상군은 297 명이었다. 지방간이 있는 군에서 정상군에 비해 mtDNA copy수가 유의하게 낮았다. 비알콜성 지방간과 알코올성 지방간 모두 지방간이 있는 군에서 말초혈액 mtDNA copy 수가 낮았다. 말초혈액의 mtDNA copy 수는 ALT, AST, $\gamma$-GTP, 체질량지수, 허리둘레, 이완기혈압, 유리지방산 수치와 역의 상관관계를 보였다. 말초혈액에서의 mtDNA copy 수는 지방간 여부 및 인슐린저항성 관련 대사 인자들과 높은 연관성이 있었다.

Mitochondrial Genome Microsatellite Instability and Copy Number Alteration in Lung Carcinomas

  • Dai, Ji-Gang;Zhang, Zai-Yong;Liu, Quan-Xing;Min, Jia-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2393-2399
    • /
    • 2013
  • Objective: Mitochondrial DNA (mtDNA) is considered a hotspot of mutations in various tumors. However, the relationship between microsatellite instability (MSI) and mtDNA copy number alterations in lung cancer has yet to be fully clarifieds. In the current study, we investigated the copy number and MSI of mitochondrial genome in lung carcinomas, as well as their significance for cancer development. Methods: The copy number and MSI of mtDNA in 37 matched lung carcinoma/adjacent histological normal lung tissue samples were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) assays for sequence variation, followed by sequence analysis and fluorogenic 5'-nuclease real-time PCR. Student's t test and linear regression analyses were employed to analyze the association between mtDNA copy number alterations and mitochondrial MSI (mtMSI). Results: The mean copy number of mtDNA in lung carcinoma tissue samples was significantly lower than that of the adjacent histologically normal lung tissue samples (p<0.001). mtMSI was detected in 32.4% (12/37) of lung carcinoma samples. The average copy number of mtDNA in lung carcinoma samples containing mtMSI was significantly lower than that in the other lung carcinoma samples (P<0.05). Conclusions: Results suggest that mtMSI may be an early and important event in the progression of lung carcinogenesis, particularly in association with variation in mtDNA copy number.

위암 조직과 세포주에서 mDNA와 OXPHOS 단백질 분석 (Alterations in Mitochondrial DNA Copy Numbers and Mitochondrial Oxidative Phosphorylation (OXPHOS) Protein Levels in Gastric Cancer Tissues and Cell Lines)

  • 아드리안 시레가;하영술;문동규;우동균
    • 생명과학회지
    • /
    • 제31권12호
    • /
    • pp.1057-1065
    • /
    • 2021
  • 위암 환자에서 미토콘드리아 DNA (mtDNA)의 양적 변화가 보고 되고 있으며 이러한 변화가 위암의 발암이나 진행에 관여되는 것으로 추정되고 있다. 그리나 위암에서 미토콘드리아 단백질이나 mtDNA에 의해 암호화된 산화적 인산화(OXPHOS) 단백질의 양적 변화에 관한 연구는 아직까지 미비한 실정이다. 본 연구에서는 위암환자 조직 및 세포주를 이용하여 mtDNA 양 그리고 미토콘드리아 단백질 및 OXPHOS 단백질의 양을 분석하였다. 또한, mtDNA 양적 변화와 위암 환자의 임상병리학적 특징을 연관 분석하였다. MtDNA 양을 분석하기 위하여 qPCR 기법을 그리고 단백질 분석에는 Western blot 기법을 각각 활용하였다. 총 27개의 위암 환자 샘플에서 약 80%에 해당하는 22개의 환자 위암조직에서 정상조직에 비해 mtDNA 양이 감소하였으며, 나머지 환자에서는 mtDNA 양이 증가하였다. 이러한 mtDNA 양이 감소한 위암 조직 샘플에서는 미토콘드리아 단백질 및 OXPHOS 단백질의 양도 같이 감소하였다. 한편, 본 연구에 사용된 총 5개의 위암 세포주 모두에서 mtDNA 양이 감소하였다 그러나 위암 세포주에서는 mtDNA 양적 감소와 미토콘드리아 단백질 및 OXPHOS 단백질의 양적 감소가 항상 일치하지는 않았다. 이러한 연구결과는 위암 조직 및 세포주에서 mtDNA 양의 감소가 흔하며 이는 mtDNA 양적 변화가 위암의 생성에 관여함을 제시한다.

Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells

  • Lee, Mak-Soon;Shin, Yoonjin;Moon, Sohee;Kim, Seunghae;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • 제21권4호
    • /
    • pp.317-322
    • /
    • 2016
  • Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-$1{\alpha}$) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-$1{\alpha}$ promoter activity in $C_2C_{12}$ muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-$1{\alpha}$, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-$1{\alpha}$ promoter from -970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-$1{\alpha}$, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-$1{\alpha}$ promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-$1{\alpha}$ gene expression in $C_2C_{12}$ muscle cells.

Is Mitochondrial DNA Copy Number Associated with Clinical Characteristics and Prognosis in Gastric Cancer?

  • Lee, Hyunsu;Lee, Jae-Ho;Kim, Dong-Choon;Hwang, IlSeon;Kang, Yu-Na;Gwon, Gi-Jeong;Choi, In-Jang;Kim, Shin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.87-90
    • /
    • 2015
  • Alterations in mitochondrial DNA (mtDNA) have been studied in various cancers. However, the clinical value of mtDNA copy number (mtCN) alterations in gastric cancer (GC) is poorly understood. In the present study, we investigated whether alterations in mtCNs might be associated with clinicopathological parameters in GC cases. mtCN was measured in 109 patients with GC by quantitative real-time PCR. Then, correlations with clinicopathological characteristics were analyzed. mtCN was elevated in 64.2% of GC tissues compared with paired, adjacent, non-cancerous tissue. However, the observed alterations in mtCN were not associated with any clinicopathological characteristics, including age, gender, TN stage, Lauren classification, lymph node metastasis, and depth of invasion. Moreover, Kaplan-Meier survival curves revealed that mtCN was not significantly associated with the survival of GC patients. In this study, we demonstrated that mtCN was not a significant marker for predicting clinical characteristics or prognosis in GC.

Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum

  • Ha, Young Ran;Hwang, Bae-Geun;Hong, Yeonchul;Yang, Hye-Won;Lee, Sang Joon
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.421-430
    • /
    • 2015
  • The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (${\Delta}{\Psi}m$) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.

Quantitative analysis of mitochondrial DNA in porcine-mouse cloned embryos

  • Hyeonyeong Shin;Soyeon Kim;Myungyoun Kim;Jaeeun Lee;Dongil Jin
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.767-778
    • /
    • 2023
  • The aim of the research is to identify that porcine oocytes can function as recipients for interspecies cloning and have the ability to develop to blastocysts. Furthermore each mitochondrial DNA (mtDNA) in interspecises cloned embryos was analyzed. For the study, mouse-porcine and porcine-porcine cloned embryos were produced with mouse fetal fibroblasts (MFF) and porcine fetal fibroblasts (PFF), respectively, introduced as donor cells into enucleated porcine oocytes. The developmental rate and cell numbers of blastocysts between intraspecies porcine-porcine and interspecies mouse-porcine cloned embryos were compared and real-time polymerase chain reaction (PCR) was performed for the estimate of mouse and porcine mtDNA copy number in mouse-porcine cloned embryos at different stages.There was no significant difference in the developmental rate or total blastocyst number between mouse-porcine cloned embryos and porcine-porcine cloned embryos (11.1 ± 0.9%, 25 ± 3.5 vs. 10.1 ± 1.2%, 24 ± 6.3). In mouse-porcine reconstructed embryos, the copy numbers of mouse somatic cell-derived mtDNA decreased between the 1-cell and blastocyst stages, whereas the copy number of porcine oocyte-derived mtDNA significantly increased during this period, as assessed by real-time PCR analysis. In our real-time PCR analysis, we improved the standard curve construction-based method to analyze the level of mtDNA between mouse donor cells and porcine oocytes using the copy number of mouse beta-actin DNA as a standard. Our findings suggest that mouse-porcine cloned embryos have the ability to develop to blastocysts in vitro and exhibit mitochondrial heteroplasmy from the 1-cell to blastocyst stages and the mouse-derived mitochondria can be gradually replaced with those of the porcine oocyte in the early developmental stages of mouse-porcine cloned embryos.

Are PIK3CA Mutation and Amplification Associated with Clinicopathological Characteristics of Gastric Cancer?

  • Lee, Hyunsu;Hwang, Il-Seon;Choi, In-Jang;Kang, Yu-Na;Park, Keon-Uk;Lee, Jae-Ho
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권11호
    • /
    • pp.4493-4496
    • /
    • 2015
  • Alterations in mitochondrial DNA (mtDNA) have been studied in various cancers. However, the clinical value of mtDNA copy number (mtCN) alterations in gastric cancer (GC) is poorly understood. In the present study, we investigated whether alterations in mtCNs might be associated with clinicopathological parameters in GC cases. mtCN was measured in 109 patients with GC by real-time PCR. Then, correlations with clinicopathological characteristics were analyzed. mtCN was elevated in 64.2% of GC tissues compared with paired, adjacent, non-cancerous tissue. However, the observed alterations in mtCN were not associated with any clinicopathological characteristics, including age, gender, TN stage, Lauren classification, lymph node metastasis, and depth of invasion. Moreover, Kaplan-Meier survival curves revealed that mtCN was not significantly associated with the survival of GC patients. In this study, we demonstrated that mtCN was not a significant marker for predicting clinical characteristics or prognosis in GC.

Isorhamnetin의 근육세포 미토콘드리아 기능조절에 미치는 효과 (Effects of isorhamnetin on the regulation of mitochondrial function in C2C12 muscle cells)

  • 이막순;김양하
    • Journal of Nutrition and Health
    • /
    • 제54권4호
    • /
    • pp.335-341
    • /
    • 2021
  • Purpose: Muscle mitochondria play a key role in regulating fatty acid and glucose metabolism. Dysfunction of muscle mitochondria is associated with metabolic diseases such as obesity and type 2 diabetes. Isorhamnetin (ISOR), also known as 3-O-methylquercetin, a quercetin metabolite, is a naturally occurring flavonoid in many plants. This study evaluated the effects of ISOR on the regulation of the mitochondrial function of C2C12 muscle cells. Methods: C2C12 muscle cells were differentiated for 5 days, and then treated in various concentrations of ISOR. Cytotoxicity was determined by assessing cell viability using the water-soluble tetrazolium salt-8 assay principle at different concentrations of ISOR and time points. Levels of the mitochondrial DNA (mtDNA) content and gene expression were measured by quantitative real-time polymerase chain reaction. The citrate synthase (CS) activity was quantified by the enzymatic method. Results: ISOR at a concentration of 10 µM did not show any cytotoxic effects. ISOR increased the mtDNA copy number in a time- or dose-dependent manner. The messenger RNA levels of genes involved in mitochondrial function, such as peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein 3 were significantly stimulated by the ISOR treatment. The CS activity was also significantly increased in a time- or dose-dependent manner. Conclusion: These results suggest that ISOR enhances the regulation of mitochondrial function, which was at least partially mediated via the stimulation of the mtDNA replication, mitochondrial gene expression, and CS activity in C2C12 muscle cells. Therefore, ISOR may be useful as a potential food ingredient to prevent metabolic diseases-associated muscle mitochondrial dysfunction.

한국인 다낭성난소증후군 환자에서 미토콘드리아 DNA Copy 수의 정량적 분석 (Mitochondrial DNA Copy Number in the Patients of Korean Polycystic Ovary Syndrome (PCOS))

  • 박지은;장민희;조성원;김유신;원형재;조정현;백광현;이숙환
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제33권4호
    • /
    • pp.245-251
    • /
    • 2006
  • 목 적: 제2형 당뇨의 위험도가 높은 PCOS 환자와 미토콘드리아와의 연관성을 보기 위하여 mitochondria DNA copy 수를 알아보고자 하였다. 연구방법: 연구대상자는 ESHRE의 진단 기준을 만족하는 다낭성난소증후군 여성 28명과 연령이 비슷하며 규칙적인 생리를 하는 여성 28명의 대조군을 대상으로 하였다. 연구대상자들의 genomic DNA는 혈액에서 추출하였으며, 미토콘드리아의 ribosomal RNA 부위를 중합효소 연쇄반응을 통해 증폭한 후 클로닝 하여 표준곡선을 작성한 후, 이를 토대로 다낭성난소증후군 환자의 미토콘드리아 initial quantity를 계산하였다. 결 과: Real-time PCR 결과 다낭성난소증후군 환자의 mtDNA copy 수는 $2,167,887.50{\pm}1,252,459.28$, 정상 대조군은 $1,726,410{\pm}407,858.519$으로 다낭성난소증후군 환자에서 약간 감소하였으나 유의한 차이는 없었다 (p=0.08). 결 론: 본 연구에서는 다낭성난소증후군 환자의 혈액에서 mtDNA copy 수를 조사한 결과, 정상 대조군과 다낭성난소증후군 환자 사이에서 mtDNA copy 수의 유의한 차이가 없었다. 다낭성난소증후군의 병인에는 상당히 복합적인 요소가 있는 것으로 보여지며 그 중 인종적, 지역적 그리고 유전적인 변이가 있는 것으로 보이기 때문에 앞으로 여러 인종에서 더 많은 다낭성난소증후군 환자를 대상으로 연구하여야 될 것으로 사료되는 바이다.