Jak-STAT pathway is required for embryogenesis, female gametogenesis, cytokine-mediated neuroprotection, diabetes, obesity, cancer, stem cell, and various tissues. The noncanonical role of Jak-STAT in mitochondria function was supported by the detection of STAT protein in mitochondria, however, several studies show that STAT protein is detected in the endoplasmic reticulum (ER), and not in mitochondria. STAT protein may alter mitochondria function without entering mitochondria, this involves regulation of fission and fusion proteins to change mitochondria morphology. However, how changes in mitochondria morphology lead to changes in mitochondria metabolism needs further investigation.
Mitochondria play a key role in maintaining life by producing ATP and heat. Recent researches have demonstrated that degenerative diseases such as heart failure, obesity/diabetes, cardiovascular disease, and psychiatric diseases are accompanied by mitochondria dysfunction. In this sense, mitochondria medicine considers the significance of mitochondria in human pathology and tries to explain degenerative diseases as a fatal consequence of mitochondria dysfunction. Here, I introduce the fundamentals of mitochondria physiology and present examples showing the relationship between mitochondria dysfunction and chronic complex diseases. Although mitochondria medicine uses a molecular biological approach predominantly, a biomedical engineering approach might play a critical role in unveiling the complexity of mitochondria medicine and in its application to the diagnosis and treatment of chronic diseases. Thus, I also briefly review the prospects of research using biomedical engineering methods.
Cytochrome-c-oxidase in mitochondria membrane is one of the most important factors for energy generation in the cell. As well as it is electron transfer enzyme, it is also heavily related to the apoptosis and other pathologic conditions. Meanwhile, porin is a protein located in inner and outer membranes of mitochondria, which is assumed to be functionally correlated with cytochrome-c-oxidase. It functions as forming electron transfer chain and conveying ATP. Therefore, using the immune-microscopy, It compared the distribution of cytochrome-c-oxidase and porin to figure out the formation and changes on cytochrome-c-oxidase in mitochondrial cristae. The sarcroplasm of cardic muscle tissue has many mitochondria. They are classified into two groups: the mitochondria with many cytochrome-c-oxidase and the mitochondria with only porins. The mitochondria with porins had few cytochrome-c-oxidases in their membrane; in contrast, the other mitochondria with rich cytochrome-c-oxidase had few porins in their walls. In addition, according to the location of the tissue in bovine heart, distribution of those kind of mitochondria had been clearly separated. As a result, it could be assumed that immature mitochondria has many porins to transfer the protein materials from sarcroplasm through the porins, and they made cytochrome-c-oxidase until it is enough, and then they decreased the porin and maintained minimum number of the porin.
Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.
Ascidian embryos have become an important model for embryological studies, offering a simple example for mechanisms of cytoplasmic components segregation. It is a well-known example that the asymmetric segregation of mitochondria into muscle lineage cells occurs during ascidian embryogenesis. However, it is still unclear which signaling pathway is involved in this process. To obtain molecular markers for studying mechanisms involved in the asymmetric distribution of mitochondria, we have produced monoclonal antibodies, Mito-1, Mito-2 and Mito-3, that specifically recognize mitochondria-rich cytoplasm in cells of the ascidian Halocynthia roretzi embryos. These antibodies stained cytoplasm like reticular structure in epidermis cells, except for nuclei, at the early tailbud stage. Similar pattern was observed in vital staining of mitochondria with DiOC2, a fluorescent probe of mitochondria. Immunostaining with these antibodies showed that mitochondria are evenly distributed in the animal hemisphere blastomeres at cleavage stages, whereas not in the vegetal hemisphere blastomeres. Mitochondria were transferred to the presumptive muscle and nerve cord lineage cells of the marginal zone in the vegetal hemisphere more than to the presumptive mesenchyme, notochord and endoderm lineage of the central zone. Therefore, it is suggested that these antibodies will be useful markers for studying mechanisms involved in the polarized distribution of mitochondria during ascidian embryogenesis.
Mitochondria dysfunction was first described in the 1960s. However, the extent and mechanisms of mitochondria dysfunction's role in cellular physiology and pathology has only recently begun to be appreciated. To adequately evaluate mitochondria-mediated toxicity, it is not only necessary to understand mitochondria biology, but discerning mitochondrial redox biology is also essential. The latter is intricately tied to mitochondrial bioenergetics. Mitochondrial free radicals, antioxidants, and antioxidant enzymes are players in mitochondrial redox biology. This review will provide an across-the-board, albeit not in-depth, overview of mitochondria biology and mitochondrial redox biology. With accumulating knowledge on mitochondria biology and mitochondrial redox biology, we may devise experimental methods with adequate sensitivity and specificity to evaluate mitochondrial toxicity, especially in vivo in living organisms, in the near future.
Jun, Jin Hyun;Kim, Jihyun;Kim, Kyung Tae;Sung, Ho Joong
Biomedical Science Letters
/
v.20
no.3
/
pp.180-184
/
2014
Mitochondria play a crucial role in many essential biological events by way of the electron transport chains and intermembrane proteins that they contain. Abnormalities in the mitochondria are strongly correlated with the development of diseases such as atherosclerosis, cancer, and diabetes. However, the study of mitochondria has been referred to as 'labor-intensive' because of the difficulty in isolating the organelles from their various sources, which can include cultured cells and tissues. Multiple companies provide mitochondria isolation kits, and it is possible for investigators to use different kits and apply different protocols depending on the source of the mitochondria. Therefore, we focused on producing an isolation buffer that could be applied to both cultured cells and tissues, and optimized an isolation protocol that could be used with both. Specifically, we adjusted the buffer condition that can be applied to human cervical cancer cells, fibroblasts, and tissues such as mouse liver and spleen. We also optimized the protocol to improve the efficacy and efficiency of the steps involved in the isolation of mitochondria. These methodological improvements may contribute to advanced research by allowing investigators to overcome the difficulties involved in isolation of mitochondria from biological samples.
In this study, the effects of iron on cytochrome c oxidase (CcO) in rat lung mitochondria were examined. Similar to liver mitochondria, iron accumulated considerably in lung mitochondria (more than 2-fold). Likewise, the reactive oxygen species and nitric oxide (NO) content of mitochondria were increased by more than 50% and 100%, respectively. NO might be produced by nitric oxide synthase (NOS), eNOS and iNOS type, with particular contribution by NOS in mitochondria. The respiratory control ratio of iron overloaded lung mitochondria dropped to nearly 50% due to increased state 4. Likewise, cytochrome c oxidase activity was lowered significantly to approximately 50% due to excess iron. Real-time PCR revealed that the expression of isoforms 1 and 2 of subunit IV of CeO was enhanced greatly under excess iron conditions. Taken together, these results show that oxidative phosphorylation within lung mitochondria may be influenced by iron overload through changes in cytochrome c oxidase and NO.
Mitochondria have long been recognized as ATP engines for the cell and recently as a dynamic and mobile organelles that control cell death and life. This exquisite organelle is the site of reactive oxygen species production and is highly vulnerable to exogenous stresses, resulting in catastrophic damage to the cell. Mitochondrial dysfunction is linked to a wide range of age-associated degenerative diseases, such as metabolic syndrome, cardiovascular disease, and neurodegenerative diseases. Understanding the molecular mechanisms of mitochondria-dependent pathogenesis may provide important strategies to treat these diseases. Indeed, mitochondria are emerging therapeutic targets for the mitochondria-related diseases. In this paper, we review the recent concepts of mitochondrial biology and how mitochondria are involved in age-associated degenerative diseases. Furthermore, we summarize the therapeutics which target to improve mitochondrial functions.
Proceedings of the Korean Society of Applied Pharmacology
/
2008.04a
/
pp.23-30
/
2008
Mitochondria biogenesis requires a coordination of two genomes, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Disruption of mitochondria function leads to a loss of mitochondrial membrane potential and ATP generating capacity and consequently results in chronic degenerative diseases including insulin resistance, metabolic syndrome and neurodegenerative diseases. Although PPAR-${\gamma}$ coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) was discovered as a central regulator of mitochondria biogenesis and a transcriptional co-activator of nuclear respiratory factor (NRF) and mitochondrial transcription factor A (Tfam), the expressions of PGC-$1{\alpha}$, NRF and Tfam were not significantly altered in tissues showing abnormal mitochondria functions. This observation suggests that there should be another regulator(s) for mitochondria function. Here, we demonstrate microRNAs (miRNAs) can modulate mitochondria function. Overexpression of microRNA dissipated mitochondrial membrane potential and increased ROS production in vitro and in vivo. It will be discussed the target of microRNA and its role in metabolic syndrome.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.