DOI QR코드

DOI QR Code

A Panoramic Overview of Mitochondria and Mitochondrial Redox Biology

  • Kim, Aekyong (School of Pharmacy, Catholic University of Daegu)
  • Received : 2014.11.20
  • Accepted : 2014.12.24
  • Published : 2014.12.31

Abstract

Mitochondria dysfunction was first described in the 1960s. However, the extent and mechanisms of mitochondria dysfunction's role in cellular physiology and pathology has only recently begun to be appreciated. To adequately evaluate mitochondria-mediated toxicity, it is not only necessary to understand mitochondria biology, but discerning mitochondrial redox biology is also essential. The latter is intricately tied to mitochondrial bioenergetics. Mitochondrial free radicals, antioxidants, and antioxidant enzymes are players in mitochondrial redox biology. This review will provide an across-the-board, albeit not in-depth, overview of mitochondria biology and mitochondrial redox biology. With accumulating knowledge on mitochondria biology and mitochondrial redox biology, we may devise experimental methods with adequate sensitivity and specificity to evaluate mitochondrial toxicity, especially in vivo in living organisms, in the near future.

Keywords

References

  1. Zimorski, V., Ku, C., Martin, W.F. and Gould, S.B. (2014) Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol., 22C, 38-48.
  2. Vogtle, F.N., Burkhart, J.M., Rao, S., Gerbeth, C., Hinrichs, J., Martinou, J.C., Chacinska, A., Sickmann, A., Zahedi, R.P. and Meisinger, C. (2012) Intermembrane space proteome of yeast mitochondria. Mol. Cell. Proteomics, 11, 1840-1852. https://doi.org/10.1074/mcp.M112.021105
  3. Herrmann, J.M., Longen, S., Weckbecker, D. and Depuydt, M. (2012) Biogenesis of mitochondrial proteins. Adv. Exp. Med. Biol., 748, 41-64. https://doi.org/10.1007/978-1-4614-3573-0_3
  4. Tzagoloff, A. (1982) Mitochondria. Plenum Press, New York, pp. 1-342.
  5. Burger, G., Gray, M.W. and Lang, B.F. (2003) Mitochondrial genomes: anything goes. Trends Genet., 19, 709-716. https://doi.org/10.1016/j.tig.2003.10.012
  6. Burger, G., Forget, L., Zhu, Y., Gray, M.W. and Lang, B.F. (2003) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc. Natl. Acad. Sci. U.S.A., 100, 892-897. https://doi.org/10.1073/pnas.0336115100
  7. Bendich, A.J. (1996) Structural Analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J. Mol. Biol., 255, 564-588. https://doi.org/10.1006/jmbi.1996.0048
  8. Berdanier, C.D. and Everts, H.B. (2001) Mitochondrial DNA in aging and degenerative disease. Mutat. Res., 475, 169-183. https://doi.org/10.1016/S0027-5107(01)00068-9
  9. Ju, Y.S., Alexandrov, L.B., Gerstung, M., Martincorena, I., Nik-Zainal, S., Ramakrishna, M., Davies, H.R., Papaemmanuil, E., Gundem, G., Shlien, A., Bolli, N., Behjati, S., Tarpey, P.S., Nangalia, J., Massie, C.E., Butler, A.P., Teague, J.W., Vassiliou, G.S., Green, A.R., Du, M.Q., Unnikrishnan, A., Pimanda, J.E., Teh, B.T., Munshi, N., Greaves, M., Vyas, P., El-Naggar, A.K., Santarius, T., Collins, V.P., Grundy, R., Taylor, J.A., Hayes, D.N., Malkin, D., Foster, C.S., Warren, A.Y., Whitaker, H.C., Brewer, D., Eeles, R., Cooper, C., Neal, D., Visakorpi, T., Isaacs, W.B., Bova, G.S., Flanagan, A.M., Futreal, P.A., Lynch, A.G., Chinnery, P.F., McDermott, U., Stratton, M.R. and Campbell, P.J. (2014) Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife, 3, eLife.02935.
  10. Fernandez-Silva, P., Enriquez, J.A. and Montoya, J. (2003) Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol., 88, 41-56. https://doi.org/10.1113/eph8802514
  11. Brenmoehl, J. and Hoeflich, A. (2013) Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion, 13, 755-761. https://doi.org/10.1016/j.mito.2013.04.002
  12. Suliman, H.B., Carraway, M.S., Welty-Wolf, K.E., Whorton, A.R. and Piantadosi, C.A. (2003) Lipopolysaccharide Stimulates Mitochondrial Biogenesis via Activation of Nuclear Respiratory Factor-1. J. Biol. Chem. 278, 41510-41518. https://doi.org/10.1074/jbc.M304719200
  13. Kelly, D.P. and Scarpulla, R.C. (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev., 18, 357-368. https://doi.org/10.1101/gad.1177604
  14. Cotter, D., Guda, P., Fahy, E. and Subramaniam, S. (2004) MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res., 32, D463-467. https://doi.org/10.1093/nar/gkh048
  15. McDonald, T.G. and Van Eyk, J.E. (2003) Mitochondrial proteomics. Undercover in the lipid bilayer. Basic Res. Cardiol., 98, 219-227.
  16. Herrmann, J.M. (2003) Converting bacteria to organelles: evolution of mitochondrial protein sorting. Trends Microbiol., 11, 74-79. https://doi.org/10.1016/S0966-842X(02)00033-1
  17. Cohen, I., Guillerault, F., Girard, J. and Prip-Buus, C. (2001) The N-terminal domain of rat liver carnitine palmitoyltransferase 1 contains an internal mitochondrial import signal and residues essential for folding of its C-terminal catalytic domain. J. Biol. Chem., 276, 5403-5411. https://doi.org/10.1074/jbc.M009555200
  18. Addya, S., Anandatheerthavarada, H.K., Biswas, G., Bhagwat, S.V., Mullick, J. and Avadhani, N.G. (1997) Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2. J. Cell. Biol., 139, 589-599. https://doi.org/10.1083/jcb.139.3.589
  19. Rojo, E.E., Stuart, R.A. and Neupert, W. (1995) Conservative sorting of F0-ATPase subunit 9: export from matrix requires delta pH across inner membrane and matrix ATP. EMBO J., 14, 3445-3451.
  20. Truscott, K.N., Kovermann, P., Geissler, A., Merlin, A., Meijer, M., Driessen, A.J., Rassow, J., Pfanner, N. and Wagner, R. (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol., 8, 1074-1082. https://doi.org/10.1038/nsb726
  21. van Loon, A.P. and Schatz, G. (1987) Transport of proteins to the mitochondrial intermembrane space: the 'sorting' domain of the cytochrome c1 presequence is a stop-transfer sequence specific for the mitochondrial inner membrane. EMBO J., 6, 2441-2448.
  22. Koehler, C.M., Jarosch, E., Tokatlidis, K., Schmid, K., Schweyen, R.J. and Schatz, G. (1998) Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science, 279, 369-373. https://doi.org/10.1126/science.279.5349.369
  23. Sirrenberg, C., Endres, M., Folsch, H., Stuart, R.A., Neupert, W. and Brunner, M. (1998) Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature, 391, 912-915. https://doi.org/10.1038/36136
  24. Baumann, F., Neupert, W. and Herrmann, J.M. (2002) Insertion of bitopic membrane proteins into the inner membrane of mitochondria involves an export step from the matrix. J. Biol. Chem., 277, 21405-21413. https://doi.org/10.1074/jbc.M201670200
  25. Vo, T.D., Greenberg, H.J. and Palsson, B.O. (2004) Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem., 279, 39532-39540. https://doi.org/10.1074/jbc.M403782200
  26. Colombini, M., Yeung, C.L., Tung, J. and Konig, T. (1987) The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim. Biophys. Acta, 905, 279-286. https://doi.org/10.1016/0005-2736(87)90456-1
  27. Mannella, C.A., Forte, M. and Colombini, M. (1992) Toward the molecular structure of the mitochondrial channel, VDAC. J. Bioenerg. Biomembr., 24, 7-19. https://doi.org/10.1007/BF00769525
  28. Shoshan-Barmatz, V. and Ben-Hail, D. (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion, 12, 24-34. https://doi.org/10.1016/j.mito.2011.04.001
  29. Brierley, G.P., Baysal, K. and Jung, D.W. (1994) Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers. J. Bioenerg. Biomembr., 26, 519-526. https://doi.org/10.1007/BF00762736
  30. O'Rourke, B. (2000) Pathophysiological and protective roles of mitochondrial ion channels. J. Physiol., 529, 23-36. https://doi.org/10.1111/j.1469-7793.2000.00023.x
  31. Garlid, K.D. and Paucek, P. (2003) Mitochondrial potassium transport: the K(+) cycle. Biochim. Biophys. Acta, 1606, 23-41. https://doi.org/10.1016/S0005-2728(03)00108-7
  32. Tang, X.D., Santarelli, L.C., Heinemann, S.H. and Hoshi, T. (2004) Metabolic regulation of potassium channels. Annu. Rev. Physiol., 66, 131-159. https://doi.org/10.1146/annurev.physiol.66.041002.142720
  33. Kunji, E.R. (2004) The role and structure of mitochondrial carriers. FEBS Lett., 564, 239-244. https://doi.org/10.1016/S0014-5793(04)00242-X
  34. Smith, A.C. and Robinson, A.J. (2011) A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst. Biol., 5, 102. https://doi.org/10.1186/1752-0509-5-102
  35. Divakaruni, A.S. and Murphy, A.N. (2012) Cell biology. A mitochondrial mystery, solved. Science, 337, 41-43. https://doi.org/10.1126/science.1225601
  36. Fernie, A.R., Carrari, F. and Sweetlove, L.J. (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol., 7, 254-261. https://doi.org/10.1016/j.pbi.2004.03.007
  37. Lichtor, T. and Dohrmann, G.J. (1986) Respiratory patterns in human brain tumors. Neurosurgery, 19, 896-899. https://doi.org/10.1227/00006123-198612000-00002
  38. Verrier, F., Mignotte, B., Jan, G. and Brenner, C. (2003) Study of PTPC composition during apoptosis for identification of viral protein target. Ann. N.Y. Acad. Sci., 1010, 126-142. https://doi.org/10.1196/annals.1299.022
  39. Tsujimoto, Y. (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J. Cell. Physiol., 195, 158-167. https://doi.org/10.1002/jcp.10254
  40. Donovan, M. and Cotter, T.G. (2004) Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta, 1644, 133-147. https://doi.org/10.1016/j.bbamcr.2003.08.011
  41. Thornberry, N.A. and Lazebnik, Y. (1998) Caspases: enemies within. Science, 281, 1312-1316. https://doi.org/10.1126/science.281.5381.1312
  42. Danial, N.N. and Korsmeyer, S.J. (2004) Cell death: critical control points. Cell, 116, 205-219. https://doi.org/10.1016/S0092-8674(04)00046-7
  43. Debatin, K.M. and Krammer, P.H. (2004) Death receptors in chemotherapy and cancer. Oncogene, 23, 2950-2966. https://doi.org/10.1038/sj.onc.1207558
  44. Hancock, J.T., Desikan, R. and Neill, S.J. (2001) Does the redox status of cytochrome C act as a fail-safe mechanism in the regulation of programmed cell death? Free Radical Biol. Med., 31, 697-703. https://doi.org/10.1016/S0891-5849(01)00646-3
  45. Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M. and Dawson, V.L. (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 297, 259-263. https://doi.org/10.1126/science.1072221
  46. Li, L.Y., Luo, X. and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412, 95-99. https://doi.org/10.1038/35083620
  47. Hegde, R., Srinivasula, S.M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A.S., Fernandes-Alnemri, T. and Alnemri, E.S. (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem., 277, 432-438. https://doi.org/10.1074/jbc.M109721200
  48. Vyssokikh, M.Y. and Brdiczka, D. (2003) The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim. Pol., 50, 389-404.
  49. Tarze, A., Deniaud, A., Le Bras, M., Maillier, E., Molle, D., Larochette, N., Zamzami, N., Jan, G., Kroemer, G. and Brenner, C. (2007) GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene, 26, 2606-2620. https://doi.org/10.1038/sj.onc.1210074
  50. Taylor, S.W., Fahy, E., Zhang, B., Glenn, G.M., Warnock, D.E., Wiley, S., Murphy, A.N., Gaucher, S.P., Capaldi, R.A., Gibson, B.W. and Ghosh, S.S. (2003) Characterization of the human heart mitochondrial proteome. Nat. Biotechnol., 21, 281-286. https://doi.org/10.1038/nbt793
  51. Cadenas, E. and Davies, K.J. (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol. Med., 29, 222-230. https://doi.org/10.1016/S0891-5849(00)00317-8
  52. Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P. and Fenn, W.O. (1954) Oxygen poisoning and x-irradiation: a mechanism in common. Science, 119, 623-626. https://doi.org/10.1126/science.119.3097.623
  53. McCord, J.M. and Fridovich, I. (1969) Superoxide Dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244, 6049-6055.
  54. Halliwell, B. and Gutteridge, J.M. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219, 1-14. https://doi.org/10.1042/bj2190001
  55. Gutteridge, J.M. and Halliwell, B. (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N.Y. Acad. Sci., 899, 136-147.
  56. Fee, J.A. (1982) Is superoxide important in oxygen poisoning? Trends Biochem. Sci., 7, 84-86. https://doi.org/10.1016/0968-0004(82)90151-7
  57. Picard, V., Epsztejn, S., Santambrogio, P., Cabantchik, Z.I. and Beaumont, C. (1998) Role of Ferritin in the Control of the Labile Iron Pool in Murine Erythroleukemia Cells. J. Biol. Chem., 273, 15382-15386. https://doi.org/10.1074/jbc.273.25.15382
  58. Tangeras, A., Flatmark, T., Backstrom, D. and Ehrenberg, A. (1980) Mitochondrial iron not bound in heme and iron-sulfur centers. Estimation, compartmentation and redox state. Biochim. Biophys. Acta, 589, 162-175. https://doi.org/10.1016/0005-2728(80)90035-3
  59. Keyer, K. and Imlay, J.A. (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. U.S.A., 93, 13635-13640. https://doi.org/10.1073/pnas.93.24.13635
  60. Mikkelsen, R.B. and Wardman, P. (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene, 22, 5734-5754. https://doi.org/10.1038/sj.onc.1206663
  61. Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 64, 97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
  62. Rowley, D.A. and Halliwell, B. (1982) Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts. FEBS Lett., 142, 39-41. https://doi.org/10.1016/0014-5793(82)80214-7
  63. Rowley, D.A. and Halliwell, B. (1982) Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds. FEBS Lett., 138, 33-36. https://doi.org/10.1016/0014-5793(82)80388-8
  64. Nauser, T. and Koppenol, W.H. (2002) The Rate Constant of the Reaction of Superoxide with Nitrogen Monoxide: Approaching the Diffusion Limit. J. Phys. Chem. A, 106, 4084-4086. https://doi.org/10.1021/jp025518z
  65. Kirsch, M. and de Groot, H. (2002) Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen. J. Biol. Chem., 277, 13379-13388. https://doi.org/10.1074/jbc.M108079200
  66. Beckman, J.S. and Koppenol, W.H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol., 271, C1424-1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  67. Halliwell, B. (1989) Superoxide, iron, vascular endothelium and reperfusion injury. Free Radical Res. Commun., 5, 315-318. https://doi.org/10.3109/10715768909073413
  68. Denicola, A., Souza, J.M. and Radi, R. (1998) Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A., 95, 3566-3571. https://doi.org/10.1073/pnas.95.7.3566
  69. Alderton, W.K., Cooper, C.E. and Knowles, R.G. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem. J., 357, 593-615. https://doi.org/10.1042/0264-6021:3570593
  70. Tay, Y.M., Lim, K.S., Sheu, F.S., Jenner, A., Whiteman, M., Wong, K.P. and Halliwell, B. (2004) Do mitochondria make nitric oxide? no? Free Radical Res., 38, 591-599. https://doi.org/10.1080/10715760410001694008
  71. Lacza, Z., Horn, T.F., Snipes, J.A., Zhang, J., Roychowdhury, S., Horvath, E.M., Figueroa, J.P., Kollai, M., Szabo, C. and Busija, D.W. (2004) Lack of mitochondrial nitric oxide production in the mouse brain. J. Neurochem., 90, 942-951. https://doi.org/10.1111/j.1471-4159.2004.02553.x
  72. Zanella, B., Giordano, E., Muscari, C., Zini, M. and Guarnieri, C. (2004) Nitric oxide synthase activity in rat cardiac mitochondria. Basic Res. Cardiol., 99, 159-164. https://doi.org/10.1007/s00395-003-0454-3
  73. Kanai, A., Epperly, M., Pearce, L., Birder, L., Zeidel, M., Meyers, S., Greenberger, J., de Groat, W., Apodaca, G. and Peterson, J. (2004) Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells. Am. J. Physiol. Heart Circ. Physiol., 286, H13-21. https://doi.org/10.1152/ajpheart.00737.2003
  74. Zaobornyj, T. and Valdez, L.B. (2014) Heart mitochondrial nitric oxide synthase: a strategic enzyme in the regulation of cellular bioenergetics. Vitam. Horm., 96, 29-58. https://doi.org/10.1016/B978-0-12-800254-4.00003-9
  75. Jourd'heuil, D., Jourd'heuil, F.L., Kutchukian, P.S., Musah, R.A., Wink, D.A. and Grisham, M.B. (2001) Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J. Biol. Chem., 276, 28799-28805. https://doi.org/10.1074/jbc.M102341200
  76. Radi, R., Cassina, A., Hodara, R., Quijano, C. and Castro, L. (2002) Peroxynitrite reactions and formation in mitochondria. Free Radical Biol. Med., 33, 1451-1464. https://doi.org/10.1016/S0891-5849(02)01111-5
  77. Stamler, J.S., Jaraki, O., Osborne, J., Simon, D.I., Keaney, J., Vita, J., Singel, D., Valeri, C.R. and Loscalzo, J. (1992) Nitric oxide circulates in mammalian plasma primarily as an Snitroso adduct of serum albumin. Proc. Natl. Acad. Sci. U.S.A., 89, 7674-7677. https://doi.org/10.1073/pnas.89.16.7674
  78. Jourd'heuil, D., Laroux, F.S., Miles, A.M., Wink, D.A. and Grisham, M.B. (1999) Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch. Biochem. Biophys., 361, 323-330. https://doi.org/10.1006/abbi.1998.1010
  79. Goldstein, S. and Czapski, G. (1995) Direct and indirect oxidations by peroxynitrite. Inorg. Chem., 34, 4041-4048. https://doi.org/10.1021/ic00120a006
  80. Merenyi, G. and Lind, J. (1998) Free radical formation in the peroxynitrous acid (ONOOH)/peroxynitrite ($ONOO^{-}$) system. Chem. Res. Toxicol., 11, 243-246. https://doi.org/10.1021/tx980026s
  81. Augusto, O., Bonini, M.G., Amanso, A.M., Linares, E., Santos, C.C. and De Menezes, S.L. (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radical Biol. Med., 32, 841-859. https://doi.org/10.1016/S0891-5849(02)00786-4
  82. Lymar, S.V. and Hurst, J.K. (1995) Rapid reaction between peroxonitrite ion and carbon dioxide: Implications for biological activity. J. Am. Chem. Soc., 117, 8867-8868. https://doi.org/10.1021/ja00139a027
  83. Bonini, M.G., Radi, R., Ferrer-Sueta, G., Ferreira, A.M. and Augusto, O. (1999) Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J. Biol. Chem., 274, 10802-10806. https://doi.org/10.1074/jbc.274.16.10802
  84. Ono, Y., Lin, L., Storey, B.T., Taguchi, Y., Dodgson, S.J. and Forster, R.E. (1996) Continuous measurement of 13C16O2 production from [13C]pyruvate by intact liver mitochondria: effect of HCO3-. Am. J. Physiol. Cell Physiol., 270, C98-106. https://doi.org/10.1152/ajpcell.1996.270.1.C98
  85. Buxton, G.V. and Elliot, A.J. (1986) Rate-constant for reaction of hydroxyl radical with bicarbonate ions. Radiat. Phys. Chem., 27, 241-243.
  86. Santos, C.X., Bonini, M.G. and Augusto, O. (2000) Role of the carbonate radical anion in tyrosine nitration and hydroxylation by peroxynitrite. Arch. Biochem. Biophys., 377, 146-152. https://doi.org/10.1006/abbi.2000.1751
  87. Shafirovich, V., Dourandin, A., Huang, W. and Geacintov, N.E. (2001) The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J. Biol. Chem., 276, 24621-24626. https://doi.org/10.1074/jbc.M101131200
  88. Yermilov, V., Yoshie, Y., Rubio, J. and Ohshima, H. (1996) Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett., 399, 67-70. https://doi.org/10.1016/S0014-5793(96)01288-4
  89. Nordberg, J. and Arner, E.S. (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol. Med., 31, 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
  90. Schafer, F.Q. and Buettner, G.R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med., 30, 1191-1212. https://doi.org/10.1016/S0891-5849(01)00480-4
  91. Kirsch, M. and De Groot, H. (2001) NAD(P)H, a directly operating antioxidant? FASEB J., 15, 1569-1574. https://doi.org/10.1096/fj.00-0823hyp
  92. Gotoh, N. and Niki, E. (1992) Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim. Biophys. Acta, 1115, 201-207. https://doi.org/10.1016/0304-4165(92)90054-X
  93. Buettner, G.R. and Jurkiewicz, B.A. (1993) Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radical Biol. Med., 14, 49-55. https://doi.org/10.1016/0891-5849(93)90508-R
  94. Slot, J.W., Geuze, H.J., Freeman, B.A. and Crapo, J.D. (1986) Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab. Invest., 55, 363-371.
  95. Okado-Matsumoto, A. and Fridovich, I. (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem., 276, 38388-38393. https://doi.org/10.1074/jbc.M105395200
  96. Muller, F.L., Liu, Y. and Van Remmen, H. (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem., 279, 49064-49073. https://doi.org/10.1074/jbc.M407715200
  97. Leveque, V.J., Vance, C.K., Nick, H.S. and Silverman, D.N. (2001) Redox properties of human manganese superoxide dismutase and active-site mutants. Biochemistry, 40, 10586-10591. https://doi.org/10.1021/bi010792p
  98. Buettner, G.R. (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys., 300, 535-543. https://doi.org/10.1006/abbi.1993.1074
  99. Thomas, S.R. and Stocker, R. (2000) Molecular action of vitamin E in lipoprotein oxidation: Implications for atherosclerosis. Free Radical Biol. Med., 28, 1795-1805. https://doi.org/10.1016/S0891-5849(00)00236-7
  100. May, J.M. (2000) How does ascorbic acid prevent endothelial dysfunction? Free Radical Biol. Med., 28, 1421-1429. https://doi.org/10.1016/S0891-5849(00)00269-0
  101. Lang, J.K., Gohil, K. and Packer, L. (1986) Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Anal. Biochem., 157, 106-116. https://doi.org/10.1016/0003-2697(86)90203-4
  102. Thomas, S.M., Gebicki, J.M. and Dean, R.T. (1989) Radical initiated alpha-tocopherol depletion and lipid peroxidation in mitochondrial membranes. Biochim. Biophys. Acta, 1002, 189-197. https://doi.org/10.1016/0005-2760(89)90286-5
  103. Antunes, F., Salvador, A., Marinho, H.S., Alves, R. and Pinto, R.E. (1996) Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radical Biol. Med., 21, 917-943. https://doi.org/10.1016/S0891-5849(96)00185-2
  104. Vatassery, G.T., Smith, W.E., Quach, H.T. and Lai, J.C. (1995) In vitro oxidation of vitamin E, vitamin C, thiols and cholesterol in rat brain mitochondria incubated with free radicals. Neurochem. Int., 26, 527-535. https://doi.org/10.1016/0197-0186(94)00147-M
  105. Crane, F.L. (2001) Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr., 20, 591-598. https://doi.org/10.1080/07315724.2001.10719063
  106. Neuzil, J., Witting, P.K. and Stocker, R. (1997) Alpha - tocopheryl hydroquinone is an efficient multifunctional inhibitor of radical-initiated oxidation of low density lipoprotein lipids. Proc. Natl. Acad. Sci. U.S.A., 94, 7885-7890. https://doi.org/10.1073/pnas.94.15.7885
  107. Thomas, S.R., Witting, P.K. and Stocker, R. (1996) 3-Hydroxyanthranilic acid is an efficient, cell-derived co-antioxidant for alpha -tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J. Biol. Chem., 271, 32714-32721. https://doi.org/10.1074/jbc.271.51.32714
  108. Lenaz, G., Fato, R., Di Bernardo, S., Jarreta, D., Costa, A., Genova, M.L. and Parenti Castelli, G. (1999) Localization and mobility of coenzyme Q in lipid bilayers and membranes. BioFactors, 9, 87-93. https://doi.org/10.1002/biof.5520090202
  109. May, J.M., Cobb, C.E., Mendiratta, S., Hill, K.E. and Burk, R.F. (1998) Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J. Biol. Chem., 273, 23039- 23045. https://doi.org/10.1074/jbc.273.36.23039
  110. Packer, L., Witt, E.H. and Tritschler, H.J. (1995) Alphalipoic acid as a biological antioxidant. Free Radical Biol. Med., 19, 227-250. https://doi.org/10.1016/0891-5849(95)00017-R
  111. May, J.M., Mendiratta, S., Hill, K.E. and Burk, R.F. (1997) Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J. Biol. Chem., 272, 22607- 22610. https://doi.org/10.1074/jbc.272.36.22607
  112. Kletzien, R.F., Harris, P.K. and Foellmi, L.A. (1994) Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J., 8, 174-181. https://doi.org/10.1096/fasebj.8.2.8119488
  113. Jacob, C., Giles, G.I., Giles, N.M. and Sies, H. (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. Engl., 42, 4742-4758. https://doi.org/10.1002/anie.200300573
  114. Torchinsky, Y.M. (1981) Sulfur in proteins. Pergamon Press, New York, pp. 1-294.
  115. Wood, Z.A., Schroder, E., Robin Harris, J. and Poole, L.B. (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci., 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
  116. Chelikani, P., Fita, I. and Loewen, P.C. (2004) Diversity of structures and properties among catalases. Cell. Mol. Life Sci., 61, 192-208. https://doi.org/10.1007/s00018-003-3206-5
  117. Hofmann, B., Hecht, H.J. and Flohe, L. (2002) Peroxiredoxins. Biol. Chem., 383, 347-364.
  118. Nobumoto, M., Yamada, M., Song, S., Inouye, S. and Nakazawa, A. (1998) Mechanism of mitochondrial import of adenylate kinase isozymes. J. Biochem., 123, 128-135. https://doi.org/10.1093/oxfordjournals.jbchem.a021899
  119. Bai, J. and Cederbaum, A.I. (2001) Mitochondrial catalase and oxidative injury. Biol. Signals Recept., 10, 189-199. https://doi.org/10.1159/000046887
  120. Hirota, K., Nakamura, H., Masutani, H. and Yodoi, J. (2002) Thioredoxin superfamily and thioredoxin-inducing agents. Ann. N.Y. Acad. Sci., 957, 189-199. https://doi.org/10.1111/j.1749-6632.2002.tb02916.x
  121. Imai, H. and Nakagawa, Y. (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Biol. Med., 34, 145-169. https://doi.org/10.1016/S0891-5849(02)01197-8
  122. Rhee, S.G., Woo, H.A., Kil, I.S. and Bae, S.H. (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem., 287, 4403-4410. https://doi.org/10.1074/jbc.R111.283432
  123. Powis, G. and Montfort, W.R. (2001) Properties and biological activities of thioredoxins. Annu. Rev. Biophys. Biomol. Struct., 30, 421-455. https://doi.org/10.1146/annurev.biophys.30.1.421
  124. Nishiyama, A., Masutani, H., Nakamura, H., Nishinaka, Y. and Yodoi, J. (2001) Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life, 52, 29-33. https://doi.org/10.1080/15216540252774739
  125. Smith, C.V., Jones, D.P., Guenthner, T.M., Lash, L.H. and Lauterburg, B.H. (1996) Compartmentation of glutathione: implications for the study of toxicity and disease. Toxicol. Appl. Pharmacol., 140, 1-12. https://doi.org/10.1006/taap.1996.0191
  126. Sies, H. (1982) Nicotinamide nucleotide compartmentation in Metabolic compartmentation (Sies, H. Ed.). Academic Press, New York, pp. 205-231.
  127. Reich, J.G. and Sel'kov, E.E. (1981) Pools and pathways of energy metabolism in Energy metabolism of the cell: A theoretical trestise Ed.). Academic Press, New York, pp. 108-198.
  128. Di Lisa, F., Menabo, R., Canton, M., Barile, M. and Bernardi, P. (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem., 276, 2571-2575. https://doi.org/10.1074/jbc.M006825200
  129. Di Lisa, F. and Ziegler, M. (2001) Pathophysiological relevance of mitochondria in NAD+ metabolism. FEBS Lett., 492, 4-8. https://doi.org/10.1016/S0014-5793(01)02198-6
  130. Berger, F., Ramírez-Hernandez, M.H. and Ziegler, M. (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci., 29, 111-118. https://doi.org/10.1016/j.tibs.2004.01.007
  131. Zhang, X., Kurnasov, O.V., Karthikeyan, S., Grishin, N.V., Osterman, A.L. and Zhang, H. (2003) Structural Characterization of a Human Cytosolic NMN/NaMN Adenylyltransferase and Implication in Human NAD Biosynthesis. J. Biol. Chem., 278, 13503-13511. https://doi.org/10.1074/jbc.M300073200
  132. Iwahashi, Y., Hitoshio, A., Tajima, N. and Nakamura, T. (1989) Characterization of NADH kinase from saccharomyces cerevisiae. J. Biochem., 105, 588-593. https://doi.org/10.1093/oxfordjournals.jbchem.a122709
  133. Ohashi, K., Kawai, S. and Murata, K. (2012) Identification and characterization of a human mitochondrial NAD kinase. Nat. Commun., 3, 1248. https://doi.org/10.1038/ncomms2262
  134. Toledano, M.B., Delaunay-Moisan, A., Outten, C.E. and Igbaria, A. (2013) Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid. Redox Signaling, 18, 1699-1711. https://doi.org/10.1089/ars.2012.5033
  135. Chen, Z. and Lash, L.H. (1998) Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J. Pharmacol. Exp. Ther., 285, 608-618.
  136. Garcia-Ruiz, C., Morales, A., Colell, A., Rodes, J., Yi, J.R., Kaplowitz, N. and Fernandez-Checa, J.C. (1995) Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canalicular transporters for reduced glutathione. J. Biol. Chem., 270, 15946-15949. https://doi.org/10.1074/jbc.270.27.15946
  137. Fernandez-Checa, J.C., Kaplowitz, N., Garcia-Ruiz, C. and Colell, A. (1998) Mitochondrial glutathione: importance and transport. Semin. Liver Dis., 18, 389-401. https://doi.org/10.1055/s-2007-1007172
  138. Kembro, J.M., Aon, M.A., Winslow, R.L., O'Rourke, B. and Cortassa, S. (2013) Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys. J., 104, 332-343. https://doi.org/10.1016/j.bpj.2012.11.3808

Cited by

  1. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway vol.37, pp.7, 2016, https://doi.org/10.1007/s13277-016-4864-x
  2. Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke vol.21, pp.3, 2017, https://doi.org/10.1080/14728222.2017.1281250
  3. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin? vol.16, pp.8, 2015, https://doi.org/10.3390/ijms160819458
  4. Benzoquinone induces ROS-dependent mitochondria-mediated apoptosis in HL-60 cells vol.34, pp.4, 2018, https://doi.org/10.1177/0748233717750983
  5. The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-04114-x