• Title/Summary/Keyword: Mist particle size

Search Result 26, Processing Time 0.017 seconds

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Evaluation of Removal Efficiency of Water Contents using Inertial Impaction Separator (관성 충돌 방식의 액적 분리장치의 수분제거효율 평가)

  • Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • Inertial impaction type mist eliminators are the most effective instruments to separate mist from the gas. In this work, the effect of the horizontal chevron type mist eliminators is characterized experimentally. Droplet size distribution and evaluation of removal efficiency of the chevron type mist eliminators at different gas flows were investigated using an aerosol particle size analyzer and a portable aerosol spectrometer, respectively. The experimental investigations showed that the mist removal efficiency in these instruments is dependent in the droplet size, and the pressure drop is nil.

The Technology of Mist Removal in Flue Gas by the Plasma of Impulse Streamer Corona (저온플라즈마에 의한 배연 가스내의 미스트 처리기술)

  • 하상안;김일배;강신묵
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.69-76
    • /
    • 1999
  • This research was carried but to investigate the characteristics of mist removal with the change of operating conditions in the plasma reactor of impulse streamer corona based on the distribution of particle size measured by laser diffraction spectrometers. The operating conditions in this experiment were power of impulse streamer corona, gas velocity, collection time, and SOx/NOx concentration. The collection efficiency T(d) was estimated by distribution of particle size in the collection zone through the advanced model.

  • PDF

Collection Efficiency of a Mist Eliminator for Wet Flue Gas Desulfurization (습식 배연탈황설비용 습분제거기 포집효율 평가)

  • Kim, Moon-Won;Yook, Se-Jin;Yu, Tae U
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • Recently, there has been much research on the effect of ultrafine dust on human body with increasing interest in the ultrafine dust. In the Republic of Korea, there are many old thermal power plants, and the amount of ultrafine dust emitted from the thermal power plants is reported to be about 14% of the total amount of domestic fine dust. Therefore, the amount of fine dust from the flue gas desulfurization facility in the thermal power plant needs be reduced. In this study, we made an experimental setup to simulate a flue gas desulfurization facility and analyzed the physical characteristics of the particles passing through a mist eliminator. Experiments were carried out to investigate the collection efficiency of the mist eliminator by using the Arizona Test Dust in a dry environment, and then spraying limestone slurry into the flue gas desulfurization system equipped with the mist eliminator to examine the size and morphology of limestone particles upstream and downstream of the mist eliminator. Cut-off size of the mist eliminator was formed at about $6{\mu}m$. The result of this study is expected to be helpful for designing an electrostatic precipitator for removing particles passing through the mist eliminator.

Measurement Technique of Particle Sizing in Spay Flow (분무 유동의 입경 계측 기법에 관한 연구)

  • Yang, Chang-Jo;Kim, Jeong-Hwan;Oh, Jong-Hwan;Kim, Mann-Eung;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.534-539
    • /
    • 2005
  • Particle image analyzer for measuring droplet size has been developed. Image processing technique was used with relaxation method. The morphological method based on partial curvature information of pre-processed images was adopted for recognition and separation of overlapped particles. The measurement results show that the present method may be reliable for the analysis of the size and distribution of droplets produced by water mist spay flow.

  • PDF

A study on particle collection efficiency of a low power consumption two-stage electrostatic precipitator for oil mists collection (오일 미스트 포집을 위한 저전력 소비형 2단 전기집진기의 집진효율에 대한 연구)

  • Song, Chi-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.834-843
    • /
    • 2014
  • A two-stage electrostatic precipitator (ESP) using a carbon brush charger and a plate-plate parallel aluminum collector was developed and its application for removal of oil mist aerosols was investigated. Charge number per particle and particle collection efficiency at different applied voltage to the carbon brush charger were measured and compared to those obtained by theoretical calculations. A long-term operation of the ESP during 9 weeks was also performed to evaluate its performance durability for oil mists. Average charge number per mist particle increased with the applied voltage to the charger, and thus the collection efficiency of the mist particles also increased overall at the particle size range of 0.26 - 3 mm. The tendencies of the average charge number per particle and particle collection efficiency obtained from theoretical calculations were considerably consistent with those of the experimental results. Particle collection efficiency of ~99 % at 0.3 mm could be achieved by power consumption of only 0.0033 W/($m^3/h$) at the face velocity of 1 m/s and its collection performance maintained stably during every 8 hr operation per day for 9 weeks with little increase of pressure drop.

The Characteristics of Dust Removal in Flue Gas by the Plasma of Impulse Streamer Corona (충격식 코로나 방전 플라즈마를 이용한 배연가스로부터 먼지제거에 대한 특성)

  • 김은호
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1261-1267
    • /
    • 2003
  • On the basis of the distribution of particle size measured by laser diffraction spectrometers, this research was carried out to investigate the characteristics of mist removal with the change of operating condition in the plasma reactor of impulse streamer corona. The operating parameters in this experiment were power of impulse streamer corona, gas velocity, impulse generation time, gas temperature, and SOx/NOx concentration. The collection efficiency T(d) was estimated by the distribution of particle size in the collection zone through the advanced model.

Mist Formation Characteristics in Turning (선삭 가공시의 미스트 발생 특성)

  • 오명석;고태조;박성호;김희술;정종운
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.147-152
    • /
    • 2002
  • The mechanism of the aerosol(mist) generation generally consists of spin-off, splash, and evaporation/condensation. Host researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the flow direction of the cutting fluid and generate the heat by the relative motion of between tool and workpicee, and so the mass loading of the mist is greatly increased as compared with non-cutting. In this paper, we show some experimental data that the mist formation characteristics of cutting is different from that of non-cutting.

  • PDF

A Study on the Fire Suppression Characteristics of a Flame Arrester with Water Mist System (미분무 시스템이 장착된 화염방지장치의 화재 진화 특성에 관한 연구)

  • Kim, Hae-Ji;Lee, Kyung-Ro
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.117-124
    • /
    • 2016
  • In this paper, we developed a breather valve with a water mist system for use near an oil storage tank. Our process applied a water mist system to the flame arrester to evaluate the fire suppression characteristics. For the fire suppression evaluation of the water mist system, we evaluated the angle of the nozzle, fire suppression, spray particle size, flashback, fire suppression time, and fire suppression test of antifreeze. Through the fire suppression test, the best fire suppression nozzle used an angle of $140^{\circ}$, and the flashback phenomenon of flame arrester did not occur. The fire suppression time of water mist system time was within three seconds, and the antifreeze was no problem with the fire suppression.

Performance Experiment and Evaluation of Water jet by the Explosives Position in Water-bag blasting using the Mist Guider (분무 가이더를 이용한 워터 백 기폭 시 폭약의 위치에 따른 분사 성능실험 및 평가)

  • Kim, Seung-Jun;Kim, Jung-Gyu;Ko, Young-Hun;Jung, Seung-Won;Baluch, Khaqan;Jin, Guochen;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.29-38
    • /
    • 2018
  • With the recent industrial developments and economic development nationally, there has been a rapidly increasing demand for the use of underground space as locations for establishing social infrastructure and various convenience facilities. In this study, a mist-control system was developed to reduce the generation of dust in underground blasting. To enhance the dust-reduction effect, a guiding device was developed which is capable of adjusting the direction of the spray toward's the blasting face of mine or tunnel. A numerical analysis was performed by using the AUTODYN software, and results were compared with those published in basic experiments. To verify the mist-diffusion effect according to the position of explosives in a water bag, numerical analyses were conducted for the following cases: Explosives were set in the middle, and in the bottom of the water bag. The optimum condition was external detonation and center charge. The mist particle size from the result was suitable for the reduction of dust after blasting in underground mine and tunnel.