• Title/Summary/Keyword: Mission Reliability

Search Result 222, Processing Time 0.025 seconds

다목적실용위성 2호기 신뢰성 및 FMECA

  • Lee, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.44-53
    • /
    • 2003
  • The purpose of reliability prediction is to estimate the basic reliability and basic reliability and mission reliability of system and to make a determination of whether these reliability requirements can be achieved with the proposed design. Also, potential design weakness can be identified through the FMECA process. This technical memo summarizes the KOMPSAT-2 reliability and FMECA analysis results.

  • PDF

ANALYSIS ON THE AVAILABILITY OF COMS GS

  • Park, Durk-Jong;Lim, Hyun-Su;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.212-215
    • /
    • 2006
  • This paper describes several reliability models to estimate COMS ground segment availability and shows assessed availability according to GS function. Due to a back-up concept among three ground center, SOC will have all H/W and S/W module to be installed in MSC and KOSC site. Therefore, all configurations and availability parameters for H/W and S/W modules in MSC and KOSC are assumed as equal with those in SOC, if related modules have same function. Prior to access availability over COMS GS function, Availability related to fundamental configuration such as series, parallel, partial operation, and module combined H/W and S/W is described. Consequently, all functions are expected to operate with more than 99% of availability.

  • PDF

Study on Risk-based Satellite Product Assurance and Tailoring (리스크 기반의 위성 제품보증 및 테일러링 분석)

  • Song, Sua;Chang, Young-Keun
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.76-88
    • /
    • 2018
  • Space agencies such as NASA, ESA, and the US military provide guidelines and standards for PA(product assurance) requirements and plans. In recent years, major satellite manufacturers around the world have been mitigating PA requirements and processes by tailoring. PA tailoring has been implemented to improve the cost and schedule efficiency. PA tailoring can be accomplished based on various factors such as mission, classification of mission risk, complexity, development cost, life cycle, etc. In this study, PA tasks according to the mission risk classification proposed by NASA are investigated, and the tailoring method is suggested for the optimization of the development cost and schedule. In particular, the classification of mission risk for the satellites under development or operation in Korea is performed, and PA characteristics in accordance with mission risk are analyzed.

L.E.O. Satellite Power Subsystem Reliability Analysis

  • Zahran M.;Tawfik S.;Dyakov Gennady
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.104-113
    • /
    • 2006
  • Satellites have provided the impetus for the orderly development of reliability engineering research and analysis because they tend to have complex systems and hence acute problems. They were instrumental in developing mathematical models for reliability, as well as design techniques to permit quantitative specification, prediction and measurement of reliability. Reliability engineering is based on implementing measures which insure an item will perform its mission successfully. The discipline of reliability engineering consists of two fundamental aspects; $(1^{st})$ paying attention to details, and $(2^{nd})$ handling uncertainties. This paper uses some of the basic concepts, formulas and examples of reliability theory in application. This paper emphasizes the practical reliability analysis of a Low Earth Orbit (LEO) Micro-satellite power subsystem. Approaches for specifying and allocating the reliability of each element of the power system so as to meet the overall power system reliability requirements, as well as to give detailed modeling and predicting of equipment/system reliability are introduced. The results are handled and analyzed to form the final reliability results for the satellite power system. The results show that the Electric Power Subsystem (EPS) reliability meets the requirements with quad microcontrollers (MC), two boards working as main and cold redundant while each board contains two MCs in a hot redundant.

Development of Operation System for Network of Multiple UAVs (복수 무인기 네트워크 통합 운영 시스템 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Kim, Sung-Su;Ryoo, Chang-Kyung;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1042-1051
    • /
    • 2011
  • In this paper, a total operating environment equipped with onboard wireless communication systems and ground-based mission control systems is proposed for simultaneous operation of multiple UAVs. A variety of operating structures are studied and classified systematically based on types and usages of the components. For each operating system, the strength, weakness and reliability aspects are investigated. Based on these results, a proper operating system configuration is determined and components are developed for mission formation flight. Proposed system can make a formation flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperate several missions.

A Radar Performance Model for Mission Analyses of Missile Models (유도무기 임무 분석을 위한 레이더 성능 모델)

  • Kim, Jingyu;Woo, S.H. Arman
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.822-834
    • /
    • 2017
  • In M&S, radar model is a software module to identify position data of simulation objects. In this paper, we propose a radar performance model for simulations of air defenses. The previous radar simulations are complicated and difficult to model and implement since radar systems in real world themselves require a lot of considerations and computation time. Moreover, the previous radar simulations completely depended on radar equations in academic fields; therefore, there are differences between data from radar equations and data from real world in mission level analyses. In order to solve these problems, we firstly define functionality of radar systems for air defense. Then, we design and implement the radar performance model that is a simple model and deals with being independent from the radar equations in engineering levels of M&S. With our radar performance model, we focus on analyses of missions in our missile model and being operated in measured data in real world in order to make sure of reliability of our mission analysis as much as it is possible. In this paper, we have conducted case studies, and we identified the practicality of our radar performance model.

The redundancy for system reliability optimization (시스템 신뢰도 최적화를 위한 중복 설계)

  • 김진철;오영환;조용구
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.13-22
    • /
    • 1997
  • In this paper, we supposed allocating the number of redundancies as the model of 0-1 knapsack problem and formulated the problem to maximize the systems reliability for a mission length. The formulated problem reduced the problem size using the modified branch and bound algorithm by Lagrangian relaxation. The subgradient method can optimize the set of solution. To verify the proposed method, we presented the improved resutls of the systems composed of two and ten component groups as the commparison of those in other papers.

  • PDF

Notes on the Comparative Study of the Reliability Estimation for Standby System with Rayleigh Lifetime Distribution

  • Kim, Hee-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.239-250
    • /
    • 2004
  • We shall propose maximum likelihood, Bayesian and generalized maximum likelihood estimation for the reliability of the two-unit hot standby system with Rayleigh lifetime distribution that switch is perfect. Each estimation will be compared numerically in terms of various mission times, parameter values and asymptotic relative efficiency through Monte Carlo simulation.

  • PDF

Measures for Improvement of RAM Target Value Setting Methods for Submarine Weapon Systems (잠수함 무기체계 RAM 목표 값 설정 방식의 개선방안)

  • Jung, Sun-uk;Shim, Hang-geun;Choi, Myoung-jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2020
  • In the case of large combined weapon systems, such as submarines, the application, and verification of methods of setting the reliability, availability, and maintainability (RAM) target values for conventional weapon systems are limited. Submarines are complex weapon systems with the characteristics of the diversity of operation mode summary and mission profiles (OMS/MP) as well as equipment complexity because they are composed of multiple weapon systems, such as sonar systems and armed systems. Therefore, this study analyzed the development cases of existing weapon systems, i.e., the RAM target value-setting cases, and derived the problems and limitations of the cases to present measures to improve the setting and verification of the ram target values of submarines. In addition, submarines operate around the world and have different operating and maintenance conditions. Therefore, a submarine's ram target values should be set and verified centering on the mission essential equipment and mission critical equipment, instead of all components that constitute weapon systems. This study examined a method to verify the required performance RAM target-value setting, considering the characteristics of submarines as well as the physical performance requirements for the systems and equipment of submarines that must be considered when implementing national defense acquisition projects for submarines.

Necessity of Reliability Theory and Establishment of Effective Education System (신뢰성이론의 필요성과 효과적인 교육시스템 구축)

  • Park, Dong Ho
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.257-262
    • /
    • 2016
  • Recently, the subject of reliability attracts a great deal of domestic and international attentions and the extensive research activities are being conducted as well. Such trend exists mainly due to the fact that the research on the subject of reliability not only contributes to the theoretical developments, but also may find a wide range of applications in practice over several fields. In particular, the research regarding the maintenance policy incorporating certain types of warranty for repairable system and its application is being performed extensively by many researchers, and their efforts seem more concentrated on developing new maintenance policies which minimize the expected operating cost incurred for replacement and repair of the system, while keeping the system at high reliability. Effective maintenance policy may reduce the operating cost and decrease the downtime of the system during its mission period and consequently, increase the productivity of the system. In this article, the major areas of interest in the field of reliability and its historic perspectives are given briefly and the theoretical aspects in several fields of reliability including the maintenance and warranty policies is also discussed. Furthermore, the current domestic situation regarding the education and research on reliability is presented, along with the importance of reliability theory and the difficulty of training reliability personnel. Finally, the author's opinion for effective education system is proposed.