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Abstract

We shall propose maximum likelihood, Bayesian and generalized 
maximum likelihood estimation for the reliability of the two-unit hot 
standby system with Rayleigh lifetime distribution that switch is perfect. 
Each estimation will be compared numerically in terms of various mission 
times, parameter values and asymptotic relative efficiency through Monte 
Carlo simulation.
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1. Introduction 

The two-unit standby redundant system configuration is a form of paralleling 

where only one component is in operation; if the operating component fails, the 

another component is brought into operation, and the redundant configuration 

continues to function. Depending failure characteristic, standby redundancy is 

classified into three types. Hot standby system, where each component has the 

same failure rate regardless of whether it is standby or in operation; Cold standby 

system, where components do not fail when they are in standby; Warm standby 

system, where a standby component can fail but it has a smaller failure rate than 

the principal component. 

Reliability computations for a two-unit standby redundant systems with constant 
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failure rate are found by Osaki and Nakagawa(1971). Fujii and Sandoh(1984) 

considered the Bayesian estimation for reliability of a two-unit hot standby 

redundant system. Kapur and Garg(1990) considered the technique of Markov 

renewal process to obtain various reliability measures for a two-unit standby 

system with perfect switch and Shen and Xie(1991) considered the effect of 

standby redundancy at the system and the component level. Oh and Berger(1992) 

suggested the adaptive sampling in Monte Carlo integration. Kim(2003) considered 

the comparative study of the reliability estimation for standby system with perfect 

switch under exponential lifetime component.

The classical statistical estimation procedure, for example maximum likelihood  

estimation, have been applied to many situations. But recently there are many 

cases in which the Bayesian methods and generalized maximum likelihood 

estimation are frequently used. The main contribution of this paper is to propose 

some Bayesian estimators and generalized maximum likelihood estimators and to 

compare them with maximum likelihood estimator in the sense of asymptotic 

relative efficiency(ARE) for the reliability of standby system.

In this paper, we shall find maximum likelihood estimator(MLE), generalized 

maximum likelihood estimator(GMLE) and Bayesian estimator for reliability of a 

two-unit hot standby system with Rayleigh lifetime distribution under perfect 

switch. Also we shall compare these estimators by ARE of GMLE and Bayesian 

estimator for MLE through generating random number of the proposed estimators 

and numerical integration.

2. Reliability for Standby System  

We consider an Rayleigh distribution of lifetime governed by the probability 

density function

                       f( t∣β)={ βte
-
1
2
βt 2

, 0≤t, 0<β
0, otherwise.

                   (2.1)

The Rayleigh distribution was first presented by Rayleigh(1919). It has been 

frequently used as a model with increasing hazard function of the form βt, β> 0. 

Here we shall consider the reliability estimation for the two-unit hot standby 

system with perfect switch in a Rayleigh distribution. The assumptions are:

1. The system consists of two independent and identically distributed units and  

     a switch.

2. One unit serves as a hot standby when the other is in use.

3. The switch is instantaneous when the one in use fails.

4. The times to failure of both units in use and standby are independent and    

     Rayleigh distributed with Rayleigh slope β.
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5. The unit and the switch are independent.

6. The switch is failure free.

Then the reliability for a two-unit hot standby system at specified mission time 

t o  is given by

            R( t 0∣β)= e
-
1
2
βt20(1+ 12 t 0 πβ․e

1
4
βt20
․erf(

1
2
t 0 β)),         (2.2) 

where

erf(x)=
2
π
⌠
⌡

x

0
e
- t 2

dt.

3. The Method of Reliability Estimation 

3.1  The Method of Maximum Likelihood Estimation 

Let T 1,…,Tn  be a simple random sample from a Rayleigh distribution with 

Rayleigh slope β  and G= ∑
n

i=1
T2i . If the time G  is accumulated on all items 

including those that failed and those that did not fail prior to test termination at 

the given mission time t 0. Then the G  is as follows;

                          G=∑
F

i=1
T
2
i+(n-R)t

2
0,                         (3.1)

where F  is the number of failures.      

In this case MLE  for the Rayleigh slope β  is as follows; 

                                 Β̂=
2n
G
.                              (3.2) 

By the invariance property of MLE, the MLE of standby system is as follows; 

RM̂ (t0 ) = e
−
1
2
B̂t20 






1 +
1
2

t0
√
πB̂ e

1
4
B̂t20

erf (
1
2

t0
√
B̂ )          (3.3)

               

3.2  The Method of Bayesian Estimation 

Now we shall consider Bayesian estimation of reliability (2.2) under the squared 

error loss. Let the random variable of Rayleigh slope β  be Β  with prior 

probability density function(p.d.f.) π(β). Then the Bayesian estimator R̃ ( t0 )  of 
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R( t 0)  is posterior mean because the loss function is squared error loss.

First we assume that Β  has an uniform distribution U(0, α) with p.d.f.

                      πU(β∣α)= {
1
α,

0< β< α

0, otherwise.
                       (3.4)

Then the posterior p.d.f. of Β  given the time G  is 

            gU(β∣ t ,α)= ( G2 )
n+1

․
β
n
e
-
1
2
βG

Γ(n+1,αG/2)
, 0< β< α,            (3.5)

where Γ(a,z)  represents the standard incomplete gamma function.

Hence the Bayesian estimator RŨ(t0 )for the system reliability R( t 0 )  is 

RŨ(t0 ) =
1

Γ(n+ 1,αG/2 )






G
2

n+ 1

(IU1 + IU2 ),                  (3.6) 

where 

IU1=Γ(n+1,α( t 0+G)/2))( 2
t 0+G )

n+1

 

and   

IU2=
1
2
t 0 π

⌠
⌡

α

0
βne

-
1
4
β(2G+2t 0-t

2
0)

erf(
1
2
t 0 β)dβ.

Second we assume that Β  has a gamma distribution GAM( b,a) with p.d.f.     

                    πG(β∣b,a)=
1

Γ(a)ba
β
a-1
e
-β/b,                    (3.7) 

where 0< β<∞  and a  is a positive integer.

Then the posterior p.d.f. of Β  given the time G  is 

           gG(β∣ t)=
1

Γ(n+a)( 2b
bG+2 )

n+a β
n+a-1

e
-β( bG+22b ).          (3.8) 

Hence the Bayesian estimator  RG̃ (t0 )for the system reliability R( t 0 )  is 

RG̃ (t0 ) =
( )(bG+ 2 )/2b n+ a

Γ(n+ a )
(IG1 + IG2 )                (3.9)

where 

IG1=Γ(n+a)․( 2b
bt 0+bG+2 )

(n+a)

and

IG2=
1
2
t 0 π

⌠
⌡

∞

0
βn+a-1/2e

-
1
2
β(G+ t 0/2+2/b)

erf( 12 t 0 β)dβ.    
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Third  we assume that Β  has an inverted gamma distribution IGAM( a,b) with 

p.d.f.

π IG(β∣a,b)=
b
a

Γ(a) (
1
β )

a+1

e - b/β, a,b,β> 0.            (3.10)

Then the posterior distribution of Β  given the time G  is 

                  gIG(β∣t)=
2 -(n-a+2)/ 2βn-a-1e -( bG/2+b/β)

(bG-1) (n-a)/2K(n-a, 2bG)
,           (3.11) 

where K(n,x)  is a modified Bessel function of the second kind of order n.  

Hence the Bayesian estimator RIG̃ (t0 )for the system reliability R( t 0 )  is  

RIG̃ (t0 ) =








bG
t0 +G

(n+ a)/2 K (n− a,
√
2b (t0 +G ) )

K (n− a,
√
2bG )

+ n IIG      (3.12) 

where

      δn=
2 -(n-a+2)/ 2(G/b) (n-a)/2

K(n-a, 2bG )
 

and

      I IG=
1
2
t 0 π

⌠
⌡

∞

0
βn-a-1/2․e

-
1
4
( t 0+2G)β

․erf(
1
2
t 0 β )dβ.

Fourth we assume that Β  has a truncated gamma distribution TGAM( b,a,β T) 

with p.d.f.

                   πTG(β∣b,a,βT)=
1

Γ(a,βT/b)b
a β

a-1e -β/b  .         (3.13) 

Then the posterior distribution of Β   given the time G  is 

               gTG(β∣ t)=
β
n+ a-1

e
-β/ (

2b
bG+2

)

Γ(n+a,βT/( 2b
bG+2

))․( 2b
bG+2 )

n+ a
.     (3.14)  

Hence the Bayesian estimator RTG̃ (t0 )for the system reliability is

RTG̃ (t0 ) =
1

Γ 





n+ a, T/ (
2b

bG + 2
) 





2b
bG + 2

n + a
(ITG1 + ITG2 )      (3.15)

where

ITG1=Γ(n+a,βT/( 2b
bG+bt 0+2

))․( 2b
bG+bt 0+2 )

(n+ a)

 

and

ITG2=
1
2
t20 π

⌠
⌡

βT

0
βn+a-1/2․e

-β( ( bG+bt 0 /2+2)/2b)erf(
1
2
t 0 β )dβ.
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3.3 The Method of Generalized Maximum Likelihood Estimation  

Now we shall consider GMLE of reliability (2.2). Let the random variable of 

Rayleigh slope failure rate β  be Β  with prior p.d.f. π( β). Then GMLE RGMLÊ (t0 )  

of R( t 0)  is MLE that is replaced β  by Β̂, which maximizes the posterior 

distribution g(β)  in reliability (2.2). 

First we assume that Β  has an uniform distribution U(0, α). Then MLE of Β  

is the same as the B̂  in (3.2). Hence GMLE RÛ(t0 )  of the system reliability 

R( t 0 )  is the same as the MLE RM̂ (t0 ) .

Second we assume that Β  has a gamma distribution GAM( b,a). 

Then MLE of Β  is 

                      Β Ĝ=
2b(n+a-1)
bG+2

.                             (3.16) 

Hence GMLE RĜ (t0 )  for the system reliability R( t 0 )  is

RĜ (t0 ) = e
−
1
2
B̂ Gt20 






1 +
1
2

t0
√
πBĜ e

1
4
B̂ Gt20

erf (
1
2

t0
√
BĜ )         (3.17)

Third  we assume that Β  has an inverted gamma distribution IGAM( a,b).

Then MLE of Β  is 

         Β IĜ=( (n-a-1)+ (n-a-1)2-2bG)/G.                   (3.18) 

Hence GMLERIĜ (t0 )  for the system reliability R( t 0 )  is 

RIĜ (t0 ) = e
−
1
2
B̂ IGt20 






1 +
1
2

t0
√
πBIĜ e

1
4
B̂ IG  t20

erf (
1
2

t0
√
BIĜ )         (3.19)

Fourth we assume that Β  has a truncated gamma distribution TGAM( b,a,β T). 

Then MLE of Β  is the same as the Β Ĝ   in (3.16).

Hence GMLE RTĜ (t0 )  of the system reliability R( t 0 )  is the same as the GMLE 

.RĜ (t0 )

4. Numerical Examples and Conclusion

Tables 1.1 through 4.3 show the simulated values for the asymptotic relative 
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efficiency(ARE) of the proposed reliability estimators for MLE under the two-unit 

hot standby system with perfect switch when β=(0.2, 0.4, 0.6, 0.8, 1.0, 1.2),  

t 0=(0.5, 0.7, 1.0), various parameter values of the prior distribution, the sample 

size n=30, and simulations were replicated 500 times. We can know from the 

Table 1.1 through 1.3, GMLE with respect to a uniform prior distribution on 

Rayleigh slope β  is more efficient than the Bayesian estimator about the given 

mission time t 0  and  parameter value β.

We can know from the Table 2.1 through 2.3, GMLE with respect to a gamma 

prior distribution is more efficient than the Bayesian estimator as the mission time 

t 0  increase and the parameter β  of the gamma prior distribution decrease except 

large t 0  and small β  together. We can know from the Table 3.1 through 3.3, 

GMLE with respect to a incomplete gamma prior distribution is more efficient 

than the Bayesian estimator about the given mission time t 0  and the parameter 

value β. We can know from the Table 4.1 through 4.3, GMLE with respect to the 

truncated gamma prior distribution is more efficient than the Bayesian estimator 

about the given mission time t 0  and parameter value β. Also the another 

Bayesian method such that the noninformative or nonparametric approach are 

remained for future works.

[Table 1.1] The simulated ARE's of GMLE RÛ(t0 )  and Bayesian estimatorRũ(t0 )  

for MLE RM̂ (t0 )  on system reliability under the U(0,α) prior on β when α=3

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RÛ,RM̂) ARE (RŨ,RM̂) ARE (RÛ,RM̂) ARE (RŨ,RM̂) ARE (RÛ,RM̂) ARE (RŨ,RM̂)

0.2 1.0000 0.0584 1.0000 0.0436 1.0000 0.0544

0.4 1.0000 0.0644 1.0000 0.0510 1.0000 0.0685

0.6 1.0000 0.0695 1.0000 0.0574 1.0000 0.0824

0.8 1.0000 0.0744 1.0000 0.0635 1.0000 0.0938

1.0 1.0000 0.0791 1.0000 0.0696 1.0000 0.1037

1.2 1.0000 0.0852 1.0000 0.0763 1.0000 0.1163
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[Table 1.2] The simulated ARE's of GMLE RÛ(t0 )  and Bayesian estimator RŨ(t0 )  

for MLE RM̂ (t0 )  on system reliability under the U(0,α) prior on β when α=5. 

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RÛ,RM̂) ARE (RŨ,RM̂) ARE (RÛ,RM̂) ARE (RŨ,RM̂) ARE (RÛ,RM̂) ARE (RŨ,RM̂)

0.2 1.0000 0.0301 1.0000 0.0275 1.0000 0.0532

0.4 1.0000 0.0321 1.0000 0.0306 1.0000 0.0665

0.6 1.0000 0.0341 1.0000 0.0330 1.0000 0.0763

0.8 1.0000 0.0357 1.0000 0.0347 1.0000 0.0831

1.0 1.0000 0.0377 1.0000 0.0369 1.0000 0.0884

1.2 1.0000 0.0392 1.0000 0.0391 1.0000 0.0920
  

[Table 1.3] The simulated ARE's of GMLE RÛ(t0 )  and Bayesian estimator RŨ(t0 )  

for MLE RM̂ (t0 )  on system reliability under the (0,α) prior on β when α=10.

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RÛ,RM̂) ARE (RŨ,RM̂) ARE (RÛ,RM̂) ARE (RŨ,RM̂) ARE (RÛ,RM̂) ARE (RŨ,RM̂)

0.2 1.0000 0.0187 1.0000 0.0259 1.0000 0.0532

0.4 1.0000 0.0196 1.0000 0.0283 1.0000 0.0664

0.6 1.0000 0.0203 1.0000 0.0299 1.0000 0.0762

0.8 1.0000 0.0209 1.0000 0.0317 1.0000 0.0834

1.0 1.0000 0.0217 1.0000 0.0327 1.0000 0.0877

1.2 1.0000 0.0224 1.0000 0.0337 1.0000 0.0902
  

[Table 2.1] The simulated ARE's of GMLE RĜ (t0 )  and Bayesian estimator RG̃ (t0 )  

for MLE RM̂ (t0 )  on system reliability under the GAM( b,10) prior on β when b=0.5. 

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RĜ,RM̂) ARE (RG̃,RM̂) ARE (RĜ,RM̂) ARE (RG̃,RM̂) ARE (RĜ,RM̂) ARE (RG̃,RM̂)

0.2 1.7548 0.0232 0.9512 0.0309 0.6586 0.0557

0.4 1.7782 0.0254 0.9669 0.0365 0.6661 0.0778

0.6 1.8109 0.0276 0.9861 0.0420 0.6729 0.1008

0.8 1.8384 0.0293 1.0031 0.0467 0.6805 0.1250

1.0 1.8819 0.0315 1.0256 0.0517 0.6835 0.1475

1.2 1.9212 0.0332 1.0455 0.0558 0.6920 0.1724
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[Table 2.2] The simulated ARE's of GMLE RĜ (t0 )  and Bayesian estimator RG̃ (t0 )  

for MLE RM̂ (t0 )  on system reliability under the GAM( b,10) prior on β when b=1.0.

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RĜ,RM̂) ARE (RG̃,RM̂) ARE (RĜ,RM̂) ARE (RG̃,RM̂) ARE (RĜ,RM̂) ARE (RG̃,RM̂)

0.2 0.9283 0.0200 0.6570 0.0273 0.5401 0.0509

0.4 0.9374 0.0218 0.6638 0.0323 0.5408 0.0703

0.6 0.9460 0.0234 0.6677 0.0363 0.5380 0.0892

0.8 0.9538 0.0248 0.6736 0.0406 0.5314 0.1068

1.0 0.9618 0.0261 0.6789 0.0446 0.5224 0.1231

1.2 0.9744 0.0277 0.6800 0.0474 0.5145 0.1395

  

[Table 2.3] The simulated ARE's of GMLE RĜ (t0 )  and Bayesian estimator RG̃ (t0 )  

for MLE RM̂ (t0 )  on system reliability under the GAM( b,10) prior on β when b=2.0.  

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RĜ,RM̂) ARE (RG̃,RM̂) ARE (RĜ,RM̂) ARE (RG̃,RM̂) ARE (RĜ,RM̂) ARE (RG̃,RM̂)

0.2 0.6486 0.0185 0.5395 0.0258 0.4876 0.0488

0.4 0.6520 0.0201 0.5422 0.0302 0.4847 0.0663

0.6 0.6551 0.0214 0.5435 0.0341 0.4775 0.0827

0.8 0.6592 0.0229 0.5428 0.0373 0.4685 0.0988

1.0 0.6595 0.0237 0.5422 0.0406 0.4578 0.1140

1.2 0.6638 0.0251 0.5401 0.0433 0.4439 0.1265

  

[Table 3.1] The simulated ARE's of GMLERIĜ (t0 )  and Bayesian estimator RIG̃ (t0 )  

for MLERM̂ (t0 )  on system reliability under the IGAM(10 ,b) prior on β when b=0.2. 

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  

0.2 4.7305 0.0134 4.7767 0.0138 4.9190 0.0149

0.4 4.7464 0.0138 4.8422 0.0149 5.2737 0.0163

0.6 4.7704 0.0144 4.9866 0.0153 5.9036 0.0176

0.8 4.8151 0.0148 5.1623 0.0165 6.8513 0.0189

1.0 4.8731 0.0153 5.4161 0.0171 8.5398 0.0192

1.2 4.9534 0.0156 5.7568 0.0176 11.1109  0.0197
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[Table 3.2] The simulated ARE's of GMLERIĜ (t0 )  and Bayesian estimator RIG̃ (t0 )  

for MLERM̂ (t0 )  on system reliability under the IGAM(10 ,b) prior on β when b=0.5.

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  

0.2 4.7875 0.0133 4.8789 0.0139 5.1436 0.0148

0.4 4.7964 0.0138 4.9500 0.0147 5.5016 0.0165

0.6 4.8248 0.0143 5.0759 0.0158 6.1871 0.0175

0.8 4.8709 0.0147 5.2860 0.0163 7.2109 0.0190

1.0 4.9327 0.0151 5.5395 0.0171 9.1877 0.0187

1.2 5.0054 0.0156 5.9009 0.0174 11.7325  0.0199

  

[Table 3.3] The simulated ARE's of GMLERIĜ (t0 )  and Bayesian estimator RIG̃ (t0 )  

for MLERM̂ (t0 )  on system reliability under the IGAM(10 ,b) prior on β when b=1.0.  

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  ARE (RIĜ,RM̂) ARE (RIG̃,RM̂)  

0.2 4.8747 0.0180 5.0590 0.0237 5.5554 0.0349

0.4 4.8843 0.0185 5.1357 0.0246 5.9592 0.0367

0.6 4.9140 0.0190 5.2693 0.0257 6.6880 0.0382

0.8 4.9565 0.0195 5.4769 0.0264 7.9744 0.0382

1.0 5.0163 0.0200 5.7544 0.0271 9.8479 0.0388

1.2 5.1003 0.0203 6.1085 0.0276 13.6588  0.0374
  

[Table 4.1] The simulated ARE's of GMLERTĜ (t0 )  and Bayesian estimator RTG̃ (t0 )  

for MLE RM̂  on system reliability under the TGAM(1,10 ,βT) prior on β when βT=5. 

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RTĜ,RM̂) ARE (RTG̃,RM̂) ARE (RTĜ,RM̂) ARE (RTG̃,RM̂) ARE (RTĜ,RM̂) ARE (RTG̃,RM̂)

0.2 0.9281 0.0134 0.6568 0.0138 0.5397 0.0148

0.4 0.9369 0.0139 0.6638 0.0148 0.5400 0.0163

0.6 0.9450 0.0143 0.6680 0.0155 0.5375 0.0177

0.8 0.9542 0.0148 0.6723 0.0163 0.5305 0.0184

1.0 0.9647 0.0153 0.6780 0.0172 0.5221 0.0188

1.2 0.9724 0.0156 0.6801 0.0176 0.5107 0.0189

  



Notes on the Comparative Study of the Reliability Estimation

 for Standby System with Rayleigh Lifetime Distribution

249

[Table 4.2] The simulated ARE's of GMLERTĜ (t0 )  and Bayesian estimatorRTG̃ (t0 )  

for MLE RM̂  on system reliability under the TGAM(1,10 ,βT) prior on β when βT=10. 

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RTĜ,RM̂) ARE (RTG̃,RM̂) ARE (RTĜ,RM̂) ARE (RTG̃,RM̂) ARE (RTĜ,RM̂) ARE (RTG̃,RM̂)

0.2 0.9288 0.0134 0.6573 0.0139 0.5395 0.0147

0.4 0.9360 0.0138 0.6620 0.0146 0.5401 0.0163

0.6 0.9452 0.0143 0.6686 0.0156 0.5378 0.0177

0.8 0.9554 0.0149 0.6716 0.0162 0.5340 0.0191

1.0 0.9642 0.0153 0.6775 0.0171 0.5244 0.0193

1.2 0.9731 0.0157 0.6813 0.0178 0.5175 0.0200

  

[Table 4.3] The simulated ARE's of GMLERTĜ (t0 )  and Bayesian estimatorRTG̃ (t0 )  

for MLE RM̂  on system reliability under the TGAM(1,10 ,βT) prior on β when βT=20.

β
t 0=0.5 t 0=0.7 t 0=1.0

ARE (RTĜ,RM̂) ARE (RTG̃,RM̂) ARE (RTĜ,RM̂) ARE (RTG̃,RM̂) ARE (RTĜ,RM̂) ARE (RTG̃,RM̂)

0.2 0.9274 0.0133 0.6570 0.0138 0.5404 0.0150

0.4 0.9359 0.0138 0.6630 0.0148 0.5416 0.0166

0.6 0.9449 0.0143 0.6691 0.0157 0.5383 0.0179

0.8 0.9567 0.0150 0.6731 0.0164 0.5322 0.0187

1.0 0.9640 0.0153 0.6767 0.0171 0.5246 0.0194

1.2 0.9731 0.0157 0.6806 0.0177 0.5162 0.0198
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